• 제목/요약/키워드: Fluctuating velocity

검색결과 136건 처리시간 0.027초

고체분말이 부상된 이상난류 관유동의 해석 (Analysis of two phase thrbulent flow in pipe with suspension of solid particles)

  • 최영돈;정명균
    • 대한기계학회논문집
    • /
    • 제5권3호
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

서해대교 현장계측에 기반한 풍속스펙트럼 모형의 비교인구 (A Comparative Study of Wind Speed Spectrum based on the In-Situ Observation at the SeoHae Bridge Site)

  • 김상범;이성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.417-421
    • /
    • 2006
  • A comparative study of wind speed spectrum based on the in-situ observation at the SeoHae bridge site is conducted. Wind speed and directions of the SeoHae bridge site is measured and analyzed. Mean wind speed and turbulence intensity are estimated. The power spectral density function of the fluctuating component of the wind velocity is estimated. Several wind spectrum models of gust wind turbulence are compared and discussed based on the estimated wind spectrum.

  • PDF

3차원 절삭가공에서의 2자유도 채터안정성 해석

  • 김병룡;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.31-35
    • /
    • 2001
  • Three dimensional dynamic cutting can be postulated as an equivalent orthogonal dynamic cutting through the plane containing both the cutting vector and the chip flow velocity vector in cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static three dimensional cutting experiments. Particular attention is paid to the energy supplied to the vibration of the tool behind the vertical vibration and the direction. The phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angel of the fluctuating cutting force must be regarded in point of stability limits. Chatter vibration can effectively be suppressed by enlarging the dynamic rigidity of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theory and the critical width of cut determined by experiments.

균일 난류 유동장내에서 연료입자의 퍼짐에 관한 연구 (A Study on the Dispersion of Fuel Particles in the Homogeneous Turbulent Flow Field)

  • 김덕줄;최연우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1330-1337
    • /
    • 1994
  • This study is to predict the lateral dispersion of the particles with time in a vertical pipe. Particle is released downward and located in the center of a pipe through which stationary, homogeneous turbulent air is flowing. We assume that gas turbulence velocities have a Gaussian probability density distribution and the presence of particle is not to alter turbulent structures. Particle trajectory is computed by numerically integrating the particle Lagrangian equation of motion, with a random sampling to determine the fluctuating air velocity experienced by each particle, which considered inertia effect and crossing-trajectories effect. The result shows characterestics of particle dispersion according to flow field condition and droplet size by using the parameters and scales, which expressed characterestics of flow field and particle. Predictions agree reasonably with experimental data.

GUST 중에서의 2차원 수중익 해석 (An analysis of Two-Dimensional Hydrofoil in Gust)

  • 김형태;이창섭;양승일
    • 한국기계연구소 소보
    • /
    • 제4권2호
    • /
    • pp.49-63
    • /
    • 1982
  • In this paper, a classical gust problem is treated by using the numerical lifting¬-surface theory to verify the effect of gust-a sudden fluctuating fluid velocity around an object, which is normal to the main stream direction-on the hydrody¬namic forces, especially the mean thrust in upstream direction, acting on the two¬-dimensional flat plate. In this case, the mean thrust wholly resorts to the leading edge suction, and it is the same situation to the case of the heaving plate in uniform flow. The ph¬enomenon of leading edge suction is very important for the flapping propulsion of animals, typical to fish and birds, and can be related to the prediction of the hydrodynamic forces acting on marine propellers operating in gustlike wakes of ships. The results of this paper can be easily superposed to those of the reference [1J in order to solve the problem of the two-dimensional oscillacting plate in gust

  • PDF

영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Comparison of the Side-Jets and Rear-Jet Effects on the Controllability of Flow-Induced Vibrations

  • HONG Jun-Ho;ARAI Norio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.164-165
    • /
    • 2003
  • The problem of a bluff body oscillating in a fluid flow has been receiving a great deal of attention. When a bluff body is placed in a flow, it experiences fluctuating hydraulic forces in both transverse and stream-wise directions. It is caused by the formation of vortices behind the body, which could cause large damages of structures. It is called the flow-induced vibrations. In this article, it is investigated the effects of that side-jets and rear-jet, which is applied to control the vortex shedding. The rear-jet is available to control the flow-induced vibrations according as the body shapes and the velocity of fluid flow in which the galloping phenomena is not appeared.

  • PDF

나노 세공을 통한 비드 체인의 전기영동에 관한 수치해석적 연구 (NUMERICAL STUDY ON ELECTROPHORETIC MOTION OF A BIO-POLYMER THROUGH A NANO-PORE)

  • 알라파티 수레수;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.575-580
    • /
    • 2010
  • In this work, the electrophoretic motion of dsDNA molecule represented by a polymer through an artificial nano-pore in a membrane is simulated using the numerical method combining the lattice Boltzmann and Langevin molecular dynamic method. The polymer motion is represented by Langevin molecular dynamics technique while the fluid flow is taken into account by fluctuating lattice-Boltzmann method. The hydrodynamic interactions between the polymer and solvent in a confined space with a membrane having a hole are considered explicitly through the frictional and the random forces. The electric field intensity over the space is obtained from a finite difference method. Initially, the polymer is placed at one side of the space, and an electric field is applied to drive the polymer to the other side of the space through the nano-pore. In future, we plan to study the effect of the polymer size and the electric field on the electrophoretic velocity.

  • PDF

자려 연소진동에 관한 연소제어와 징후의 검출 (Combustion Control and Symptom Detection on Self-excited Combustion Oscillation)

  • 양영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구 (An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer)

  • 백민수;오상헌
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.