• 제목/요약/키워드: Fluctuating power

Search Result 132, Processing Time 0.031 seconds

Generalized equivalent spectrum technique

  • Piccardo, G.;Solari, G.
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.161-174
    • /
    • 1998
  • Wind forces on structures are usually schematized by the sum of their mean static part and a nil mean fluctuation generally treated as a stationary process randomly varying in space and time. The multi-variate and multi-dimensional nature of such a process requires a considerable quantity of numerical procedures to carry out the dynamic analysis of the structural response. With the aim of drastically reducing the above computational burden, this paper introduces a method by means of which the external fluctuating wind forces on slender structures and structural elements are schematized by an equivalent process identically coherent in space. This process is identified by a power spectral density function, called the Generalized Equivalent Spectrum, whose expression is given in closed form.

Modification of IEC Flickermeter to Measure the Flicker Caused by Inter-Harmonics (상호고조파에 의한 플리커의 측정에 가능한 IEC 플리커미터의 설계)

  • Cho, Soo-Hwan;Jung, Jae-Ahn;Jang, Gil-Soo;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.69-70
    • /
    • 2007
  • Now the IEC flicker measuring algorithms and its flicker index of $P_{st}$ and $P_{lt}$ are accepted internationally as standards. But it is recently found that IEC flickermeter has a main drawback that it cannot afford to detect the fluctuating patterns of voltage envelope caused by interharmonics higher than 102Hz in the 60Hz power system. This is brought about by two components of IEC flicker measuring steps, squaring and low-pass filtering. This paper presents the innate defect of IEC flickermeter and proposes a modified measuring method considering the voltage flickers by subharmonics and interharmonics.

  • PDF

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

Wind Pressure Spectra for Circular Closed and Open Dome Roofs (원형 밀폐 및 개방형 돔 지붕의 풍압 스펙트럼)

  • Cheon, Dong-jin;Kim, Yong-Chul;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • Wind tunnel tests were conducted to analyze the wind fluctuating pressures on a circular closed and open dome roof with a low span rise. Two dome models with various geometric parameters (height/span ratios and open ratios) were used for fixed span rise ratio dome and wind pressure spectrum were analyzed. The applicability was examined in comparison with the spectral model proposed in the previous studies. The analysis results show that the wind pressure spectrum of open dome roof tends to increase power in the high frequency range and the second peak is found in the area different from the closed dome roof. In addition, according to the comparison analysis with the previous proposed spectral model, it was found that it is not applicable to the closed and open dome roofs with low rise ratio due to the different peak frequencies.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

A Study on the Propulsion and Braking Performance of the High Speed Freight Train with Composing the Rolling Stocks Formation (차량편성구성에 따른 고속화물열차의 추진 및 제동성능 분석 연구)

  • Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.298-302
    • /
    • 2016
  • Currently, logistics are in small quantities and in diverse forms, and the amounts are continuously increasing. Railway logistics however are losing their market share every year mainly due to low operation speed and loading time, which means the trucks are covering the most of the freights. In order to solve these situations, this paper proposed the high speed freight train as working multi-modality with other modes to make effective transshipment. The high speed freight train has maximum operation speed of 300km/h and electric power to run centralized power supply. There are large dual door system, bogie system covering fluctuating load of 15[ton], automatic loading device, ULD(unit load device) bed and ULD locking system in this freight rolling stock. We calculated the performance of powering and braking capacity for this train and proposed how many vehicles are composed of train set. The results in this paper can help to make a decision to define the technical specification of High-speed freight train for the efficiency of rail freight service.

Fuel Cycle Strategy of Go-ri Nuclear Power Plant - A Statistical Analysis -

  • Chung, Chang-Hyun;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.139-149
    • /
    • 1977
  • An attempt is made to establish an optimum fuel cycle strategy for the Go-ri nuclear power plant units 1 and 2. The total capital required for the fuel cycle operation is selected as a figure of merit for economic comparison of several alternative fuel cycle schemes available for the plant, and evaluated using a probabilistic method coupled with a sampling procedure of the fluctuating fuel cost data. The results are presented in the form of probability histograms. On the basis of the most likely values of the capital requirement obtained from the histograms, a conclusion is drawn that reprocessing cycle with either uranium only or both uranium and plutonium recycled is the most economic choice for the Go-ri plant.

  • PDF

An Optical Analog Encoder for Precise Angle Control of SRM (SRM의 정밀 각도제어를 위한 아날로그 엔코더)

  • 안진우;황형진;이동희;박성준
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • In a switched reluctance motor drive, it is important to synchronize the stator phase excitation with the rotor position, Therefore the position of rotor is an essential information. Although high resolution optical encoder/resolvers we used to provide a precise position information, these sensors are expensive. And switching angles synchronizing using sensorless technique has some problems like a reliability and fluctuating of the preset value in the high-speed region, which is caused by the sampling period of the microprocessor. In this paper, a low cost analog encoder suitable for practical applications is proposed. And the control algorithm to generate switching signals using a simple digital logic is presented. The validity of the proposed analog encoder with a proper logic controller is verified from the experiments.

Optimal Operating Points on the Organic Rankine Cycle to Efficiently Regenerate Renewable Fluctuating Heat Sources (신재생에너지 가변열원의 효율적 이용을 위한 유기랭킨 사이클 최적작동점에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.6-19
    • /
    • 2014
  • Organic Rankine cycle (ORC) has been widely used to convert renewable energy such as solar energy, geothermal energy, or waste energy etc., to electric power. For a small scale output power less than 10 kW, turbo-expander is not widely used than positive displacement expander. However, the turbo-expander has merits that it can operate well at off-design points. Usually, the available thermal energy for a small scale ORC is not supplied continuously. So, the mass flowrate should be adjusted in the expander to maintain the cycle. In this study, nozzles was adopted as stator to control the mass flowrate, and radial-type turbine was used as expander. The turbine operated at partial admission. R245fa was adopted as working fluid, and supersonic nozzle was designed to get the supersonic flow at the nozzle exit. When the inlet operating condition of the working fluid was varied corresponding to the fluctuation of the available thermal energy, optimal operating condition was investigated at off-design due to the variation of mass flowrate.