• Title/Summary/Keyword: Flows Control

Search Result 680, Processing Time 0.196 seconds

Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측)

  • Shin, Changmin;Na, Eunye;Lee, Eunjeong;Kim, Dukgil;Min, Joong-Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.

Control of the Pressure Oscillations in Supersonic Cavity Flows (초음속 공동유동에서 발생하는 압력변동의 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The present study describes unsteady flow phenomena generated in a supersonic flow passing over a rectangular cavity and suggests a way of control of pressure oscillation, doing harm to overall performance and stable operation of aerodynamic and industrial applications. The three-dimensional, unsteady, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme and large eddy simulation. The cavity flow are simulated with and without control methods, including a triangular bump and blowing jet installed near the leading edge of the cavity. The results show that the pressure oscillation is attenuated by both control techniques, especially near the trailing edge of cavity.

  • PDF

Variation of the Characteristics of Shock-Interaction Flows for Different Slot-Directions (슬롯방향 변화에 따른 충격파 간섭유동 특성변화에 관한 연구)

  • Chang Sung-Ha;Lee Yong-Hee;Lee Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.306-309
    • /
    • 2006
  • Passive control of the shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Effect of various slot configurations on the characteristics of the interactions are tested. Pitot/wall surface pressure distributions and flow visualizations including Schlierens and interference fringe patterns over a thin oil-film have been obtained at the downstream of the shock interactions. It was found that the interaction control by a certain slot-configuration could lead a reduction of the total pressure loss through the shock wave, however, the boundary layer thickness became thicker as compared with the case of no control.

  • PDF

Passive Control of the Condensation Shock Wave Using Bleed Slots (Bleed Slot을 사용한 응축충격파의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.997-1004
    • /
    • 2002
  • The current study describes experimental and computational works on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order 10 control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is copuled with two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indrafi transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is signi ficantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

Decoupled Power Control of Three-port Dual Active Bridge DC-DC Converter for DC Microgrid Systems (DC 마이크로 그리드를 위한 Three-port Dual Active Bridge DC-DC 컨버터의 독립 전력 제어)

  • Sim, Ju-Young;Lee, Jun-Young;Choi, Hyun-Jun;Kim, Hak-Sun;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.366-372
    • /
    • 2018
  • Three-port dual-active bridge (DAB) converter in a DC microgrid was studied due to its high power density and cost-effectiveness. The other advantages of DAB include galvanic isolation and bidirectional power conversion capability using simple control modulation. The three-port DAB converter consists of a three winding transformer and three bridges. The transformer has three phases, which means that the ports are coupled. Thus, the three-port DAB converter causes unwanted power flows when the load connected to each port changes. The basic operational principles of the three-port DAB converter are presented in this study. The decoupling control strategy of the independent port power transfer is presented with a mathematical power model to overcome the unexpected power flow problem. The validity of the proposed analysis and control strategy is verified with PSIM simulation and experiments using a 1-kW prototype power converter.

An Enhanced TFRC Congestion Control Mechanism for Mobile Environments (무선 이동 환경을 위한 개선된 TFRC 혼잡제어 메커니즘)

  • 최미라;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2003
  • TFRC(TCP-Friendly Rate Control) is proposed to satisfy the demands of multimedia applications while being reasonably fair when competing for bandwidth with TCP flows[1-3]. However, TFRC has a shortcoming that the fairness and throughput are degraded when the mobile host using TFRC experiences handoffs. This paper proposes a new control mechanism based on TFRC, which deals with the congestion caused by handoffs as well as the losses caused during the handoffs. The simulation results show that our mechanism achieves better throughput and fairness compared to TFRC for repeated handoffs.

A architecture and control method of Streaming Packet Scheduler at 100bps for Guaranteed QoS of Internet and Broadcasting Services (인터넷 및 방송서비스의 QoS 보장을 위한 10Gbps급 스트리밍 패킷 스케줄러 구조 및 제어방법)

  • Kim Kwang-Ok;Park Wan-Ki;Choi Byeoun-Chul;Kwak Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.23-34
    • /
    • 2004
  • This paper presents architecture and control method of packet scheduler to guarantee QoS of high quality streaming services in high-speed packet-switched networks. Since streaming services need far more stringent QoS requirements than the typical sort of burst data applications, they should be guaranteed minimum bandwidth and end-to-end delay bound to each flow, regardless of the behavior of other flows. To meet these requirements, a packet scheduler isolate a flow from the undesirable effects of other flows and provides end-to-end delay guarantees for individual flow and divides stringently the available link bandwidth among flows sharing the link. Until now, many vendors are developing traffic management chips running at 10Gbps, but most of chips have drawbacks to support high quality streaming services. In this paper, we investigate the drawbacks of commercial TM chips and traffic characteristic of streaming services and present implementation frameworks of the proposed packet scheduler. Finally, we analyze the simulation results of the proposed scheduler.

Combined Effects of Groundwater Abstraction and Irrigation Reservoir on Streamflow (지하수 이용과 농업용 저수지가 하천유량에 미치는 복합 영향)

  • Kim, Nam Won;Lee, Jeongwoo;Chung, Il Moon;Lee, Min Ho
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.719-733
    • /
    • 2013
  • In this study, a watershed-based surface-water and groundwater integrated model, SWAT-MODFLOW was used to evaluate streamflow depletion induced by groundwater withdrawals and irrigation reservoirs for the Juksan-cheon watershed in South Korea. The streamflow responses to groundwater pumping and irrigation reservoirs were simulated under several different scenarios. The scenarios were (1) current pumping well withdrawals with reservoirs; (2) current pumping well withdrawals without reservoirs; (3) no pumping well withdrawals with reservoirs; (4) no pumping well withdrawals without reservoirs (natural condition). The simulated results indicated that the effects of groundwater pumping on streamflow depletion are a little more significant than those of irrigation reservoirs. Particularly, the groundwater withdrawals with irrigation reservoirs at current status (scenario 1) has induced the decrease of more than 20% in drought flow against the natural condition (scenario 4) at the outlet of the watershed. The specific drought flows through the main stream of Juksan-cheon watershed were simulated in order to assess the irrigation effects on downstream flows. It was found out that the specific drought flows are increasing as the distance from the reservoir increases due to the accumulation of the return flows to stream.

Variations of Annual Evapotranspiration nnd Discharge in Three Different Forest-Type Catchments, Gyeonggido, South Korea (임상이 다른 3개 산림소유역의 장기 증발산량과 유출량의 변화)

  • Kim Kyong-Ha;Jeong Yong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.174-182
    • /
    • 2006
  • This study was to clarify the effects of forest stand changes on hydrological components of evapotranspiration and discharge. The forest-hydrological experimental stations in Gwangneung and Yangju, Gyeonggido near metropolitan Seoul have been operated by the Korea Forest Research Institute since 1979 to clarify the effects of forest types and practices on the water resources and nutrient cycling and soil loss. The hydrological regime of the forested catchments may change as forests develop. The ranges of change may be different depending on forest types. Evapotranspiration can be estimated to 679mm, 580mm and 368mm in planted young coniferous (PYC), natural old-growth deciduous (NOD) and rehabilitated young mixed (RYM), respectively. The slope of the discharge-duration curve shows the capacity of discharge control in a specific catchment. The slope tended to be steeper in RYM than NOD, the better forest condition. The slope in RYM became more gentle as the forest stand developed. Forests can modulate peak flows through interception, evapotranspiration and soil storage opportunity. PYC and RYM showed 100 and 50mm of threshold rainfall for modulating peak flows, respectively. The deciduous forest did not represent sudden changes of peak flow rates to rainfall, even 200 mm rainfall Forest development in PYC may play an important role in modulation of peak flows because peak flow rates reduced after 10 years.

Thermal and Fluid Analyses of Inner Air at Decomposition Equipment on the Waste Gas of Perfluorinated Compounds (과불화 화합물 폐가스에 대한 분해 장치에서의 내부 공기의 열유동해석)

  • You, Jeong-Bong;Kim, Young-Chun;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1375-1380
    • /
    • 2015
  • Nowadays, the technique to deal with the waste gas of perfluorinated compounds using plasma has been developed. As the effective decomposition techniques at many research centers and companies were investigated at home and abroad, the products have been improved with various methods. This study aims to guess the distributions of pressure and temperature through the thermal and fluid analyses inside the decomposition equipment model of waste gas. As the analysis result, the maximum pressure and the minimum pressure are 0.975Pa and -1.037Pa individually on the whole. It is shown that the pressure of air decreases gradually as the air flows from inlet to plane 1 and the pressure increases as the air flows from plane 1 to outlet. And the maximum temperature and the mimum temperature are $1718^{\circ}C$$26.07^{\circ}C$ individually on the whole. It is shown that the temperature of air increases gradually as the air flows from inlet to plane 4 and the temperature decreases as the air flows until outlet. It is thought that the data necessary to develop the real system can be applied by using the thermal and fluid analyses.