• Title/Summary/Keyword: Flowpath Design

Search Result 5, Processing Time 0.02 seconds

Unidirectional AGVS Flowpath Design using Tabu Search (타부탐색을 이용한 AGVS 일방향 흐름경로 설계)

  • Moon, Young-Hoon;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.97-102
    • /
    • 2004
  • AGV flowpath layout design is one of the most important steps for efficient AGV systems design. Since it was formulated by Gaskins & Tanchoco (1987), a unidirectional AGV flowpath layout design problem has been tackled by many researchers. However, the solution methods were traded off between the solution quality and the computational time. In this paper, a tabu search technique is applied to obtain a good solution for a relatively large problem in reasonable computational time. Specifically, fast construction algorithm for feasible initial solutions, long-term memory structure and neighbor solutions generation are adapted to the problem characteristics and embedded in the tabu search algorithm. Also, sets of computational experiments show that the proposed tabu search algorithm outperforms to the Ko and Egbelu's algorithm (2003).

A Analysis Study of Dual-Mode Scramjet Engine Flowpath (이중모드 스크램제트 엔진 Flowpath 해석 연구)

  • Byun, Jong-Ryul;Ahn, Jungki;Ananthkrishnan, N.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.277-284
    • /
    • 2017
  • This study is the results of the analytical research for a dual-model scramjet engine flowpath which is included inlet, isolator, combustor, and nozzle. To design a dual-mode scramjet engine and to investigate its performance, the performance analysis models and tools are required to develope for aerodynamic, thermodynamic characteristics, propulsion, and total system. Therefore, analysis models for air inlet, isolator, supersonic combustor, and nozzle of a dual-mode scramjet engine were accomplished, the performance characteristics of a dual-mode scramjet engine is investigated with using the developed analysis tools.

  • PDF

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape (허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.