• Title/Summary/Keyword: Flowing water environment

Search Result 166, Processing Time 0.024 seconds

Effect of Water Velocity on Foraging Behavior of Planktivore on Zooplankton in Aquatic Ecosystems (유속조건에 따른 수중 생태계내 소형어류의 동물플랑크톤 포식 행동 변화에 관한 연구)

  • Park, Bae Kyung;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.79-83
    • /
    • 2005
  • Foraging behaviour of false dace, Pseudorasbora parva, was investigated in water flowing at various velocities with the existence of a cavity for rest. The pursuit comprised three succeeding processes such as, approaching, chasing and attacking. Angles between the fish body and the water flow direction and swimming speeds increased in the latter stages of approaching, chasing and attacking. All pursuit angles, swimming speeds and distances increased with flow velocity and peaked at the flow velocity of 7 cm/sec. At higher velocities, however, the fish avoided the use of much energy against the large drag force. The probability of capture and the feeding rate steadily decreased with increasing flow velocity. Under the fast flow, the fish adjusted their swimming speed to get the optimum velocity relative to the flowing water for the energetic budget. Fish spent more time in the cavity as flow velocity increased to avoid the energy expenditure necessitated by the high velocity.

The Change of Pollution Loads flowing into Mokpo Harbour Due to the Operation of Mokpo Municipal Sewage Treatment Plant (목포하수처리장 가동에 따른 목포항 유입 오염부하량의 변화)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.39-44
    • /
    • 2002
  • In order to study the change of pollution loads flowing into Mokpo harbour after the operation of Mokpo Municipal Sewage Treatment Plant (MMSTP) and to evaluate the contribution of MMSTP operation to the improvement of marine water quality of Mokpo harbour, the pollution loads flowing into Mokpo harbour from land in dry weather were surveyed and estimated on the bases of the seasonal flow rates and the seasonal water qualities of streams and effluents located around Mokpo harbour from summer, 1997 to spring, 1998 before the operation of MMSTP, and the pollution loads of the inflow and the effluent of MMSTP were also surveyed and estimated from winter, 1998 to spring, 1999 after the operation of MMSTP. The treatment rates of MMSTP were shown to be about 49% in COD, 76% in TSS, 79% in VSS, 3% in T-N, 7% in DIP, 29% in T-P and -32% in DIN. The change rates of pollution loads flowing into the inner harbour of Mokpo due to the operation of MMSTP were shown to be about 56% In COD, 78% in TSS, 84% in VSS, 45% in DIN, 22% in T-N, 34% in T-P and -14% in DIP. The contribution rates of MMSTP operation to the reduction of total pollution loads flowing into the entire Mokpo harbour were found to be about 3% in COD, 3% in 755,5% in VSS,1% in DIP, 3% in T-P and -1% in DIN.

  • PDF

A New Algorithm for Complete Coverage Path-Planning of Cleaning Robots (청소 로봇을 위한 경로 계획의 새로운 알고리즘)

  • Jiang, Liu;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.252-254
    • /
    • 2005
  • Completer coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots and painter robots. In this paper, a novel Water Flowing Algorithm (WFA) is proposed for cleaning robots to complete coverage path planning in unknown environment without obstacles. The robot covers the whole workspace just like that water fills up a container. First the robot goes to the lowest point in the workspace just like water flows to the bottom of the container. At last the robot will come to highest point in the workspace just like water overflows from the container and simultaneously the robot has covered the whole workspace. The computer simulation results show that the proposed algorithm enable the robot to plan complete coverage paths.

  • PDF

Assessment of flowing ability of self-compacting mortars containing recycled glass powder

  • Alipour, Pedram;Namnevis, Maryam;Tahmouresi, Behzad;Mohseni, Ehsan;Tang, Waiching
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • This paper investigates the effect of recycled glass powder (RGP) on flowing properties of self-compacting mortars (SCMs) containing different ratios of fillers and superplasticizer dosages. Fly ash (FA), nano-silica (NS), micro-silica (MS), metakaolin (MK) and rice husk ash (RHA) are used as fillers and their synergistic effect with RFP is studied. The effects of fillers and high-range water reducer (HRWR) on flowing ability of mortars are primarily determined by slump flow and V-funnel flow time tests. The results showed that for composites with a higher RGP content, the mortar flowing ability increased but tended to decrease when the composites containing 10% MK or 5% RHA. However, the flowing ability of samples incorporating 5% RGP and 10% SF or 25% FA showed an opposite result that their slump flow spread decreased and then increased with increasing RGP content. For specimens with 3% NS, the influence of RGP content on flowing properties was not significant. Except RHA and MS, the fillers studied in this paper could reduce the dosage of HRWR required for achieving the same followability. Also, the mixture parameters were determined and indicated that the flowability of mixtures was also affected by the content of sand and specific surface area of cement materials. It is believed that excess fine particles provided ball-bearing effect, which could facilitate the movement of coarse particles and alleviate the interlocking action among particles. Also, it can be concluded that using fillers in conjunction with RGP as cementitious materials can reduce the material costs of SCM significantly.

Occurrence and Concentrations of Estrogenic Phenolic Compounds in Surface Waters of Rivers Flowing into Masan Bay, Korea

  • Choi Minkyu;Lee Su-Jeong;Koo Jun Ho;Moon Hyo-Bang;Kim Gui-Young
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.220-227
    • /
    • 2005
  • The estrogenic phenolic compounds, nonylphenol (NP), octylphenol(OP), bisphenol A (BPA) and nonylphenol mono- and diethoxylate ($NP_{1-2}EO$) were analyzed in 24 surface water samples from six rivers flowing into Masan Bay. All of the phenolic compounds were detected in all six rivers in high concentrations. The most abundant compound was $NP_{1-2}EO$ (86.0%), followed by NP ($10.1 \%$), BPA ($3.6\%$) and OP ($0.3\%$). The levels of phenolic compounds were 1.42-22.70 ${\mu}g$/L for $NP_{1-2}EO$, 0.15-1.68 ${\mu}g$/L for NP, 0.024-0.610 ${\mu}g$/L for BPA and 0.003-0.067 ${\mu}g$/L for OP. Especially, high concentrations were recorded in the rivers that pass through industrial complexes. The concentrations of phenolic compounds observed in these river waters were 1-2 orders of magnitude lower than the reported acute toxicity levels (hundreds of micrograms per liter). However, they were only slightly lower than the chronic toxicity levels. Most of the water samples also exceeded the Canadian nonylphenolic compounds water quality guideline, 1 ${\mu}g$/L, for the protection of aquatic life and the maximum permissible concentrations (MPC), 0.33 ${\mu}g$/L for NP and 0.12 ${\mu}g$/L for $NP_{1-2}EO$.

Nature-Friendly Design Characteristics of Outdoor Spaces in Brand Apartments (브랜드 아파트에 나타난 자연친화적 외부공간의 디자인 특성에 관한 연구)

  • Hwang, Yeonsook;Lee, SongHyun
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • A outdoor space of the brand apartment can improve the quality of the whole environment in apartment and has differentiated identity in apartment housing through various versions of the green space and water space plan. The purpose of this study is to evaluate nature-friendly design characteristics in brand apartments and to offer a basic information for planning of brand apartment. In concrete, nature-friendly design did by green space and water space that can analyze by visual, and investigation contents divided to position, form, user behavior, link space from user viewpoint by case study. This study examined a case of eight brand apartments located in Gangnamgu, Seoul. We has divided the characteristics of a green space into horizontal type, vertical type, multi-dimensional type and has divided the water space into stagnant water type, flowing stream type, waterfall type and fountain type. The findings are summarized as follows: First, in case of the space of brand apartment, the application of horizontal and vertical greenery was lower compare with multi-dimensional green space. The most of items for multi-dimensional greenery have been planned to the open space and promenade. Second, a stagnant water type of water space features well used in most of the cases but a water space of signs of activity like a flowing stream, waterfall, fountain types were underused because of problem of administrative and maintenance expenses. Thirdly, Water space of brand apartments was planned with specialization item by apartment housing but green space does not have differentiated item and was planned by most similar form.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

Test of a Physical Habitat Model for Stream Restoration : A Case Study on Midstream of Anyang-Cheon (생태하천복원을 위한 물리서식처 모형의 적용 : 안양천 중류를 대상으로)

  • Baek, Kyong Oh;Kim, Chang Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • This study focuses on whether a physical habitat model, River2D, is useful to assess and design stream restoration. To achieve the aim, the habitat suitability for Zacco Platypus was analyzed using River2D at midstream of the Anyang-Cheon through modifying the low flow channel and changing the flow discharge. The River2D simulation results show that the inhabited environment for Zacco Platypus is improved by increasing the sinuosity of the low flow channel, and vice versa. Also the inhabited environment for Zacco Platypus gets worse when there is no additional flow for maintenance water supply at the stream flowing through cities. In this respect, the physical habitat simulation study based on the River2D model is useful because it provides a practical guidance in designing stream restoration.

Improvement of QUAL2E Model using Nonuniform Flow Analysis (부등류해석을 이용한 QUAL2E 모형의 개선)

  • Kim, Sang Ho;Choi, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.

Influence of the River Ceasing on Wetland Environment in the Yellow River Delta (황하강 삼각주의 습지환경이 강의 흐름에 미치는 영향)

  • Chen, Weifeng;Shi, Yanxi;Mi, Qinghua;Ann, Seoung-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • The Yellow River began ceasing affected by natural factors and the unreasonable human activities. The flow broke in the Yellow River and water and sediment flowing into the sea decreased, which lowered the speed of newly formed wetland extending to the sea. The water environment deteriorated; Its composing structure tended to be unsteady; The biologic diversity decreased and wetland function reduced. To ensure that the Yellow River delta and its ecosystem develops sustainablly, it is significant to reduce times and days of the ceasing, keep certain runoff and sediments in the river to the sea and make its watercourse stable.