• Title/Summary/Keyword: Flow-supply Characteristics

Search Result 449, Processing Time 0.023 seconds

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

The Characteristics of Runoff for Hwacheon dam watershed (화천댐 상류유역의 유출거동 특성)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1069-1077
    • /
    • 2009
  • Lately, it is an important concern in water resources research to maintain a stable water supply according to a future climate change and an increase in water use. In Han-River basin, approximately 10 % of water resources that is provided the capital region (Gyeonggi, Seoul etc.) has been reduced as a consequence of the construction of Imnam Dam (storage volume: 27 billion $m^3$) located in the upper Hwacheon Dam upstream area. Therefore, streamflows have decreased in Bukhangang basin, but it could not be evaluated quantitatively. In this study, SWAT-K which is the physically based long-term runoff simulation model, was used in order to evaluate the effect of Imnam Dam on the reduced inflow to Hwacheon Dam according to the change of hydrological condition in the upstream area of Hwacheon Dam. For the model input data of North Korea area, meteorological data of GTS (Global Telecommunication System) were used, and soil maps by FAO/UNESCO (2003) were applied. Temporal variations of water resources is investigated with comparison of observed and simulated inflows at Hawcheon Dam site. Also, annual, monthly, seasonal decreases in water resources were evaluated using the flow duration analysis of simulated streamflows with or without Imnam dam.

Statistical Analysis of Aquifer Characteristics Using Pumping Test Data of National Groundwater Monitoring Wells for Korea (국가지하수 관측망의 양수시험 자료를 이용한 국내 대수층 특성의 통계적 분석)

  • Jeon Seon-Keum;Koo Min-HO;Kim Yongje;Kang In-Oak
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.32-44
    • /
    • 2005
  • 314 pumping test data of the National Groundwater Monitoring Wells (NGMWs) are analyzed to present statistical properties of fractured-rock and alluvial aquifers of Korea such as distribution of hydraulic conductivity, empirical relations between transmissivity and specific capacity, and time-drawdown patterns of pumping and recovery test. The mean hydraulic conductivity of alluvial aquifers (1.26 m/day) is 17 times greater than that of fractured-rock aquifers (0.076 m/day). Hydraulic conductivity of fracture-rock aquifers ranges in value over 4 orders of magnitude which coincide with representative values of fractured crystalline rocks and shows distinctive differences among rock types with the lowest values for metamorphic rocks and the highest values for sedimentary rocks. In consideration of the estimated transmissivity with some simplifying assumptions, it Is likely that $32\%$ of groundwater flow for NGMWs would occur through fractured-rock aquifers and $68\%$ through alluvial aquifers. Based on 314 pairs of data, empirical relations between transmissivity and specific capacity are presented for both fractured-rock and alluvial aquifers. Depending on time-drawdown patterns during pumping and recovery test, NGMWs are classified into $4\~5$ types. Most of NCMWs $(83.7\%)$ exhibit the recharge boundary type, which call be attributed to sources of water supply such as streams adjacent to the pumping well, the vertical groundwater flux between fractured-rock and the alluvial aquifers, and the delayed yield associated with gravity drainage occurring in unconfined aquifers.

A Study on the Low-Floor Bus Route Selection Considering a Residential Distribution and Traffic Characteristics of the Transportation Vulnerable - A Case of Busan - (교통약자의 거주 분포와 통행특성을 고려한 저상버스 노선 선정 - 부산시를 사례로 -)

  • PARK, Ji-Ho;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The guarantee of transportation for elderly and handicapped people is increasingly necessary owing to their growing social and economic activity. In March of 2013, a partial amendment to the law for transportation of the vulnerable was made by the government, to make more convenient transport a legal requirement. The amendment describes standards for the installation of transport facilities, and its support available. However, the adjustment of low-floor bus routes is not included. Therefore, low-floor buses are operating without consideration for the handicapped. This study evaluates the current low-floor bus system user experience by considering the residential distribution of vulnerable customers and analyzing their reasons for using public transport. As a result of this work, adjustments to current bus routes are proposed. The residential distribution of vulnerable people has been assessed using the supporting materials of the urban renewal project in Busan City, and their reasons for using public transport have been collected by a survey of the target user groups. The results show that group A, which has good accessibility, was in high demand, but provided the most limited service. Whereas group C, which also has good accessibility but was in low demand, provided its service most frequently. The data show the supply and demand inconsistencies of low-floor buses, and the inefficiency of bus route allocation. Therefore, this study proposes improvements to current methods for the effective operation of low-floor buses.

Evaluation Method for Protection Coordination of PV Systems Interconnected with Primary Feeders (태양광전원이 연계된 고압배전선로의 보호협조 평가 방안에 관한 연구)

  • Kim, Byungki;Kim, Sohee;Ryu, Kyungsang;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.29-37
    • /
    • 2011
  • Dispersed generation (DG) such as wind power (WP) and Photovoltaic systems (PV) that has been promoted at the national level recently is mainly being introduced into distribution systems adjacent to consumers because it is generation on a small scale when compared to current generation. Due to its characteristics, DG can be operated by interconnection with distribution systems to present security of more stable power and efficient use of power facilities and resources. Problems on protection coordination of distribution systems by reverse flow of DG can roughly be divided into three possibilities: excess in rated breaking capacity (12.5KA) of protective devices by a fault in DG current supply, failure to operate protective devices by an apparent effect that can occur by reduction in impedance parallel circuit fault current due to interconnection of DG, and malfunction of protective devices by interconnection transformer connection type. The purpose of this study is to analyze problems in protection coordination that can occur when DG is operated by interconnection with distribution systems by conducting modeling and simulations by using theoretical symmetrical components and MATLAB/SIMULINK to present methods to improve such problems.

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크의 종합 열유동 해석프로그램 개발)

  • Kim Hoyeon;Choi Sunghee;Bak Young;Lee Junghwan;Yoon Ikkeun;Kim Donghyuk;Ha Jongmann;Joo Sangwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.52-61
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^3$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation modes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks. Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study peformed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF