• Title/Summary/Keyword: Flow-supply Characteristics

Search Result 449, Processing Time 0.025 seconds

A Study on the Characteristics of Volumetric Efficiency of an Axial Piston Pump considering Piston Tilting

  • Park, In-Kyu;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents the characteristics of volumetric efficiency of an axial type piston pump considering the piston tilting. A numerical analysis is carried out in order to obtain the pressure distribution considering the fluid inertia at the notch of the valve plate. The cylinder pressure variation and the discharge flow rate are measured experimentally according to the operating conditions such as supply pressure, rotational speed, and viscosity of the working fluid by using the cam type test apparatus. Leakage is also measured considering piston tilting. The characteristics of the volumetric efficiency are analyzed with respect to various operating conditions and leakage is also analyzed according to the piston tilting angle. Results are applicable to improve the design of an axial type piston pump.

Performance Characteristics of a Polymer Electrolyte Fuel Cell with the Anodic Supply Mode (고분자 전해질 연료전지의 수소극 공급모드에 따른 성능특성)

  • Lee, Yong-Taek;Park, Cha-Sik;Heo, Jae-Hyeok;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.588-595
    • /
    • 2007
  • The water transport inside a polymer electrolyte fuel cell (PEFC) varied according to the anodic supply mode. The performance characteristics of a PEFC which can be affected by the water transport were observed with the anodic supply mode. In the flow-through and recirculation mode the performance showed no reduction with time because the flow in the anode was not stagnated. In the dead-end mode, without any discharged gas, the water remains inside of the anode, which caused the reduction of the performance with the lapse of time. However, even in the dead-end mode, little reduction of the performance with time was shown when only the anode was humidified externally. It means that the back-diffusion was the major factor to the accumulation of water in the anode rather than external humidification.

A Study on the Thermal Characteristics in the GPV with Heat Release by Wet Oxidation (습식산화반응열을 고려한 GPV 내 열적 특성 해석)

  • Seo, Hyeon-Seok;Lee, Hong-Cheol;Yang, Jun-Seung;Ahn, Jae-Hwan;Hwang, In-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.392-397
    • /
    • 2009
  • Gravity pressure vessels find their use in the wet oxidation of sewage sludge, which can be defined as the oxidation of organic and inorganic substances in an aqueous solution or suspension by means of oxygen or air at elevated pressures and temperatures. Numerical analyses were carried out for investigating the flow characteristics and wet air oxidation in the reaction vessel with various conditions such as supply oxidation and the supply positions of oxidation, etc. Wet air oxidation is promoted in the vicinity of bottom in the reactor with increase of oxygen supply. Also, it is the best condition to the oxidation supply position of 150 m and oxidation flow of 0.06 kg/s in the GPV reactor as the remnant of sludge and creation of organic acids.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Slot Exit (Synthetic Jet 출구 형상의 변화에 따른 유동 특성 파악을 위한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.356-361
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is fanned from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.

  • PDF

Numerical Analysis on Flow Characteristics in the Pressurized Air Supply Smoke Control System (급기가압 제연설비의 내부 유동특성에 대한 수치해석)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.52-58
    • /
    • 2017
  • This study investigated the pressure difference distribution and the flow characteristics among room, ancillary room, and stair case by carrying out the numerical simulations on the air flow inside the pressurized air supply smoke control system. Numerical simulations were conducted to analyze pressure and velocity distribution of compartments by pressurized air supply for the air-leakage test facility which was built to measure the effective leakage area. In this study, the leakage of air was considered by locating the narrow slit onto fire door and window of room. Simulated results using this method precisely followed the previous experimental results for the pressure differences between the stair case and ancillary room. Predicted results showed that the local leakage of air rarely affected the overall flow pattern and pressure distribution. Although the average velocity over the door between room and ancillary room satisfied the regulation for fire safety, it was certified the unsafe outflow to ancillary room could be occurred in the local position such as the upper part of the door.

Influence of Water Supply Withdrawal on the River Flow and Water Quality (하천취수가 하천흐름 및 수질에 미치는 영향)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.343-352
    • /
    • 2011
  • The water quantity by intake station as well as the tributary flow discharge acting as sink or source were added to the main flow rate in the present study and RMA-2 and RMA-4 models were applied to the reach from Pal-dang dam to Jam-sil submerged weir to investigate the influence of water supply withdrawal on the river flow and water quality. The numerical results revealed that the water supply withdrawal from 5 intake stations located upstream of Jam-sil submerged weir changed the total flow rate and therby induced different hydraulic characteristics in terms of water surface elevation and velocity. The changed flow field by the inclusion of water intake quantity led to the variation of water quality. By the consideration of the water supply withdrawal, the velocity structure was significantly disturbed by the outflowing flow condition nearby Gu-ui, Ja-yang, and Pung-nap intake stations. Furthermore, the mean velocity was lowered by 25% and the stage upstream of Gu-ui station rose upto 1.5 cm compared with the result by exclusion of water intake. In case of no water withdrawal, the distribution of BOD concentration was parallel throughout the domain. However, when the water withdrawal is considered, the distribution of BOD concentration nearby the Gu-ui, Am-sa, and Ja-yang station was signifiantly changed. In addition, the BOD concentration including the intake stations showed higher value at the downstream of the reach due to the loss of the discharge by water withdrawal effect. It is concluded that both the inflow and outflow discharges from tributaries and water intake stations should be included in the numerical simulation to analyze the hydrodynamic behaviors and mixing characteristics more accurately.

A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle (액주형 이류체노즐의 반경반향 분무특성에 관한 연구)

  • 최진철;노병준;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

Measurement of Dynamic Characteristics of an Inducer in Cavitating Conditions

  • Ashida, Takuya;Yamamoto, Keita;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2017
  • In liquid-propellant rockets, POGO instability can occur, in which a fluctuation of propellant supply to the engine, a thrust fluctuation, and a structural vibration are coupled. For the prediction of this instability, it is required to provide dynamic characteristics of the pump represented as the transfer matrix correlating the upstream and downstream pressure and flow rate fluctuations. In the present study, the flow rate fluctuation is evaluated from the fluctuation of pressure difference at the different locations assuming that the fluctuation is caused by the inertia of the flow rate fluctuation. The experiments were performed in some flow conditions, and it was shown that the tendencies of dynamic characteristics are related to excitation frequencies, cavitation numbers and flow rate coefficients.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • 양승헌;하현천;김재실
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.228-234
    • /
    • 2000
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing(4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and 31mos1 does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decreased by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

  • PDF

A Numerical Study on the Opening Characteristics of High Pressure Hydrogen Valves (고압수소 밸브의 시동 특성에 관한 수치적 연구)

  • SANGMIN KIM;JINSUNG KIM;YOUNGJUN CHO;SIWON YANG;MOONSUNG SHIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.689-697
    • /
    • 2023
  • The high-pressure hydrogen valve is intended to supply hydrogen charged at high pressure in the hydrogen tank to the fuel cell stack, which decompresses high-pressure hydrogen gas to low pressure and primarily limits the excessive flow. It consists of a pilot valve, a main valve, and a excessive flow valve to operate in a wide pressure range from 2 to 70 MPa of charging pressure. The opening characteristics of the valve were confirmed by computation fluid dynamics applying the moving grid technique. The behavior of the valve was predicted by predicting the force acting on the valve over time. In addition, the difference in behavior according to supply pressure was compared.