• 제목/요약/키워드: Flow-structure Interaction

검색결과 482건 처리시간 0.025초

Vortex Ring, Shock-Vortex Interaction, and Morphological Transformation Behind a Finite Cone

  • 장서명;장건식
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1599-1604
    • /
    • 2001
  • Axisymmetric compressible flow field induced by shock diffraction from a finite cone is investigated with experimental and computational methods. Double-exposure holographic interferograms show ima ges of the density field integrated along the light path. Using the sight-integrated density based on the Able transformation, the axisymmetric computational results are compared qualitatively with the experiment. In the present paper, we observed some distinguishing flow physics: the fault structure of vortex ring, the shock-vortex interaction, and the morphological transformation of shock waves.

  • PDF

이러닝 만족도 영향요인으로서의 상호작용과 몰입 (Interaction and Flow as the Antecedents of e-Learner Satisfaction)

  • 문철우;김재현
    • 컴퓨터교육학회논문지
    • /
    • 제14권3호
    • /
    • pp.63-72
    • /
    • 2011
  • 사이버 공간에서 학업을 병행하는 직장인 학생에게 강의만족은 매우 역동적이고 다차원적인 과정으로 개개인의 학업 니즈와 능력을 반영된 결과이기도 하다. 본 연구는 사이버 경영대학원에 재학 중인 직장인 학생을 대상으로 교수 학생 간 상호작용, 학생 상호간 상호작용, 몰입, 콘텐츠의 질과 구조화, 실시간 Q&A와 사이버 강의를 보완하는 수단으로서의 오프라인 보충강의 등이 만족도에 미칠 직 간접적 영향 정도를 분석하는 데 목적이 있다. 인과관계 검증에 집중하기 보다는 수강생 입장에서 흥미롭다고 인지된 과목과 어렵다고 판단된 과목을 중심으로 인과관계의 강약 정도를 그룹 별로 비교하였다. 분석결과, 어렵다고 인지된 과목을 중심으로 답한 그룹의 경우 교수 학생 간 상호작용에서 만족도, 콘텐츠품질에서 몰입, Q&A에서 교수 학생 간 상호작용 그리고 Q&A에서 학생 간 상호작용으로 이어지는 경로계수값이 흥미롭다고 인지된 과목을 택한 그룹의 경우보다 더 높은 것으로 나타났다. 반대로 학생 간 상호작용에서 만족도와 콘텐츠 구조에서 몰입으로 이어지는 경로계수값은 흥미롭다고 인지된 과목을 택한 그룹이 더 높은 것으로 나타났다. 이를 토대로 이러닝 설계상의 시사점도 간략히 제시하였다.

  • PDF

유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구 (Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method)

  • 박태규;정희택;김형범;박준영
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

1단 터빈에서 축간격 변화가 비정상 이차유동 및 성능에 미치는 영향 (The effects of axial spacing on the unsteady secondary and performance in one-stage axial turbine)

  • 박준영;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.537-540
    • /
    • 2002
  • Flow through turbomachinery has a very complex structure and is intrinsically unsteady. Especially, recent design trend to turbomachinery with short axial spacing makes the flow extremely complex due to the interaction between stator and rotor. Therefore, it is very necessary to clearly understand the complex flow structure to obtain the high efficiency turbomachinery. So, in this paper, the effects of axial spacing on the unsteady secondary flow performance in the one stage turbine are investigated by three-dimensional unsteady flow analysis. The three-dimensional solver is parallelized using domain decomposition and Message Passing Interface(MPI) standard to overcome the limitation of memory and the CPU time in three-dimensional unsteady calculation. A sliding mesh interface approach has been implemented to exchange flow information between blade rows.

  • PDF

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.

초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구 (An experimental study on the characteristics of transverse jet into a supersonic flow field)

  • 박종호;김경련;신필권;박순종;길경섭
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

로터리 압축기의 토출밸브의 미소 거동 및 유동 특성에 대한 FSI(Fluid-Structure Interaction) 기법을 이용한 수치해석 (A Numerical Analysis with the FSI Mode on the Characteristics of Flow Field and Discharge Valve Motion in a Rotary Compressor)

  • 채희문;김창녕;박성관
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.112-120
    • /
    • 2008
  • This study has been conducted to investigate the characteristics of flow field and discharge valve motion in a rotary compressor. In this study, a transient three-dimensional numerical analysis using FSI(Fluid-Structure Interaction) model has been employed to analyze the interaction between the discharge valve and the refrigerants in the rotary compressor. It has been observed that two peaks have appeared in the displacement of the discharge valve. The maximum displacement of the discharge valve has been found to be located at the second peak. Also, the input pressure of the refrigerants has been compared with the pressures of the muffler passage and the compressor outlet in the rotary compressor. The pressure has decreased along the pathway in the rotary compressor. And the volume flow rates obtained from the current numerical study have been compared with the experiment at data to verify the validity of the present numerical study. This study may supply the fundamental data for the design of rotary compressors.

규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사 (Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves)

  • 정재환;윤현식;권기조;조성준
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석 (Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh)

  • 한명륜;안형택
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.