• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.025 seconds

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

An Experimental Study on the Effects of the Boundary Layer and Heat Transfer by Vortex Interactions ( II ) - On the common flow up - (와동간의 상호작용이 경계층 및 열전달에 미치는 영향에 관한 연구 ( II ) - Common flow up에 관하여 -)

  • Han, Dong-Joo;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.298-305
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta wings protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from - 20 degree to - 45 degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. Unlike common flow down, common flow up vortices moved toward the centerline as they developed and interacted strongly with each other but not with the boundary layer. Spanwise profiles of Stanton number were similar for ${\beta}=-20^{\circ}\;and\;-35^{\circ}$, but not similar for ${\beta}=-45^{\circ}$. The case of ${\beta}=-20^{\circ}\;and\;-35^{\circ}$ showed the two peak Stanton number, but the case of ${\beta}=-45^{\circ}$ showed the only one peak Stanton number.

Effects of Variable Properties on the Laminar Heat Transfer around a Circular Cylinder in a Uniform Flow (물성치의 변화를 고려한 균일유동 중에 있는 원형 실린더 주위의 층류 열전달)

  • 강신형;홍기혁;고상근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1584-1595
    • /
    • 1993
  • Many researches were carried out to estimate heat transfer rate on a circular cylinder in a uniform flow. Various empirical correlations were suggested in the past through expermental studies, however there are considerable discrepancies in the estimated values of heat transfer coefficient. Effects of variable properties of fluid on the heat transfer between a circular cylinder and the external uniform flow were numerically investigated in the present study. The flow and temperature fields were solved using a finite volume method for the uniform flow temperature of 200-900K and the wall temperature of 300-900K. The cold as well as the hot cylinders in the uniform flow of constant temperature were investigated. A unified correlation was obtained for the both cases.

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

A Study on the Selection of the Total Pollution Load Management at Tributaries by Evaluation of Water Quality Volatility: Case Study for Chungcheongnam-do (수질변동성 평가를 통한 지류총량제 도입 대상유역 선정에 관한 연구: 충청남도를 중심으로)

  • Jeongho Choi;Hongsu Kim;Byunguk Cho;Sanghyun Park;Mukyu Lee;Byeonggu Lee;Uram Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.377-389
    • /
    • 2023
  • Chungcheongnam-do has been measuring the flow rate and water quality of streams in the province once a month since 2011 in order to water environment policies. Based on the results, after evaluating the coefficient of variation and the tendency of the water quality trend by using the Mann-Kendall test and Sen's Slope for each stream, the streams subject to priority introduction of Total Pollution Load Management at Tributaries were selected through the Stream Grouping Method. The water quality trend analysis results for 125 streams using the Mann-Kendall test and Sen's Slope were evaluated as streams showing a tendency of deteriorating water quality Biochemical oxygen demand (BOD): 13 streams, Total Phosphorus (T-P): 16 streams). Streams with deteriorating water quality were classified into A-D groups using the Stream Grouping Method. Group A, which has a high flow rate and high water quality, is a stream that requires priority management, and was selected as a stream for introduction of Total Pollution Load Management at Tributaries. There are 7 streams that need to be introduced into the BOD category, and there are 7 streams that need to be introduced into the T-P category. In this study, based on flow and water quality monitoring data accumulated over a long period of time (2011-2022), statistical techniques are used to select watersheds in which water quality is deteriorating. Accordingly, it is expected that it will be useful in establishing a water quality improvement plan in the future.

Research on the Performance of Total Heat Exchanger in a Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기 성능에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, J.R.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • This report Introduces a total heat exchanger in a solar air-conditioning system using Lithium Chloride(LiCl) solution. The hot and humid outside air is cooled and dehumidified by LiCl solution that is sprayed on the packed layer of the total heat exchanger. LiCl solution once diluted is concentrated again in a regenerator using solar energy. Three types as the packed materials were used in this experiment and the dehumidification performance was evaluated by the value of $k_xa(kg/h{\cdot}m^3{\cdot}{\Delta}x)$, overall mass transfer coefficient based on a humidity ratio potential difference, the influence of inlet LiCl solution flow rate, air flow rate, packed layer height on $k_xa$ was investigated. It was found that air flow rate, LiCl solution flow rate, packed layer height for all types had a great influnce on the value of $k_xa$.

  • PDF

Flow Rate·Water Quality Characteristics of Tributaries and a Grouping Method for Tributary Management in Nakdong River (낙동강 지류·지천의 유량·수질 특성 및 하천관리를 위한 등급화 방안 연구)

  • Na, Seungmin;Lim, Tae Hyen;Lee, Jae Yun;Kwon, Heongak;Cheon, Se Uk
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.380-390
    • /
    • 2015
  • In this study, the major 38 tributaries in Nakdong River were monitored for flow rate and water quality in order to understand the characteristics of the watershed and to find improvement plan. The flow rate and water quality for each target tributary were evaluated based on the monitoring data in 2013~2014 using a statistical package SPSS-22.0. In addition, the tributary grouping method was conducted using a $BOD_5$ concentration/flowrate and TP concentration/flowrate monitoring data. The average values of $BOD_5$, $COD_{Mn}$, TP and TOC concentrations in Gumicheon, Gyeonghocheon, Jincheoncheon, Gisegokcheon, Yonghacheon and Yonghocheon located at Nakdong Waegwan and Nakdong Goryung watershed were high and in the grade of III or IV (5~8 mg/L). The Pearson correlation coefficients of TOC with $BOD_5$, $COD_{Mn}$, and TP were greater (r=0.8, p<0.01) than those of the other water quality parameters (12 species). The tributaries with high values of water quality parameters ($BOD_5$ > 3.0 mg/L, TP > 0.1 mg/L) and flowrate (Q > $0.1m^3/sec$) were selected for improving water quality according to the stream grouping method. Five tributaries (Gumicheon, Gisegokcheon, Yonghacheon, Yeongsancheon, Mijeoncheon and Yonghocheon) were classified as Group I, which require polices and plans for water quality improvement.

Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel (왕복요동 교반조의 자유 표면에서의 산소흡수속도)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.276-280
    • /
    • 2021
  • The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.

An Experimental Study on Droplet Size according to Discharge Coefficient of Sprinkler Head (스프링클러 헤드의 방수상수에 따른 물방울 크기에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • The sprinkler system is a basic fire extinguishing system that uses water as an extinguishing agent. In order to evaluate the fire extinguishing performance of the sprinkler system, information such as the discharge angle, discharge speed, discharge pressure, flow rate, and water droplet size of the installed head are required. However, there is a lack of research on droplets size compared to other requirements. In this study, to evaluate the extinguishing characteristics of sprinkler system, the droplet size distribution was measured for various types of sprinkler heads actually used. The size of the droplet was measured using laser diffraction method. The 50% cumulative volume distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the Rosin-Rammler index value are presented. As a result of the fire simulation with FDS, it was confirmed that the performance difference occurs according to the water droplet size distribution even when the same amount of water is used. Therefore, the extinguishing performance of the sprinkler system should be evaluated considering the droplet size distribution according to the sprinkler head type.

Analysis of Rainfall-Runoff Characteristics by Improvements to the Roughness Coefficient in a Storm Sewer System (우수관거 조도계수 개선에 따른 강우-유출 특성 분석)

  • Kim, Eung-Seok;Jo, Deok-Jun;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.282-286
    • /
    • 2017
  • Rapid industrialization and urbanization have resulted in an increase in impervious areas and an increase in runoff, therefore, this causes more flooding and damage in urban areas. This study has analyzed the effects of improvements to the roughness coefficient in storm sewer pipes on flood runoff and outflow through rainfall-runoff simulations. The simulations are implemented by three scenarios to evaluate effects of improvements to the roughness coefficient for the improved length ratio to the total length, diameters and mainlines of sewer pipes. The size and length of the sewer mains are large and long to effectively increase the flow rate to the outlet, secure the passage discharge capacity of the pipe and reduce the overflow. It is effective for flood reduction that the improvement to roughness coefficient is first conducted in mainlines with longer lengths and larger diameters. The results from this study can provide a guideline for prioritizing of the sewer pipe replacement.