• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.024 seconds

Tracking Heart Rate Algorithm Based on PPG (PPG 기반 심박동수 추정 알고리즘)

  • Baek, Yong Hyun;Lee, Keun Sang;Park, Young Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.71-78
    • /
    • 2009
  • In this study, estimation of heart rate from measured PPG signal is proposed. PPG signal is to be measured blood flow in a blood vessel effected by systole and diastole. PPG sianl has single frequency so that PPG frequency can be tracked by 2nd IIR adaptive notch filter. PPG frequency is obtained continually from updating filter coefficient throughout adaptive algorithm and then the heart rate of human is approximately estimated.

  • PDF

Effect of Feeding Rate for Operation Properties of Centrifugal Thin Film Evaporator (급액속도가 원심식 박막증발기의 운전 특성에 미치는 영향)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.437-441
    • /
    • 1991
  • During the evaporation of garlic juice by centrifugal thin film evaporator (Centri-Therm, CT-1B), the effect of feeding rate was investigated for its operation properties. On the process condition of feeding rate of 25 to 125 kg/h, theoretical average thickness of the garlic juice film on the rotating cone and residence time of the juice in the evaporator varied in the range of 0.52 to 0.89 mm and 1.77 to 6.75 second, respectively. And the flow of garlic juice was considered as a streamline flow by Reynolds number. At constant temperatures of steam and juice evaporation, concentration ratio decreased with the increase of the feeding rate. But the evapoartion rate and overall heat transfer coefficient increased with the increase of the feeding rate until the feeding rate reached a certain value and then decreased. On the conditions of $25{\leq}$feeding rate ${\leq}125\;kg/h$, evaporation temperature of $40^{\circ}C$, $95{\leq}steam$ $temperature≤120^{\circ}C$ and initial feed concentration of $32^{\circ}Brix$, concentration ratio and overall heat transfer coefficient were $1.04{\sim}2.04\;and\;3,074.33{\sim}17,614.70kJ/m^{2}{\cdot}h{\cdot}^{\circ}C$.

  • PDF

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

Performance Evaluation of Double-Tube Condenser using Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane)

  • Lee, Sang-Mu;Lee, Joo-Dong;Koyama, Shigeru;Park, Byung-Duck
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2007
  • The investigation has been made into the prediction of heat exchange performance of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and micro-fin tube. Under various heat transfer conditions, mass flux, pressure drop and heat transfer coefficient of the mixed refrigerants were calculated using a prediction method, when the length of condensing tube, total heat transfer rate, mass flux and outlet temperature of coolant were maintained constant. Also, the predicted results were compared with those of HCFC22. The results showed that the mixed refrigerants of Propane/n-Butane or Propane/i-Butane could be substituted for HCFC22, while the pressure drop and overall heat transfer coefficient of the refrigerants were evaluated together.

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

Effect of Refrigerant Pipe Length on Sea Water Cooling System Performance (해수냉각시스템 성능에 미치는 냉매배관길이의 영향)

  • Yun, Jeong-In;Jo, Yeong-Je
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.346-351
    • /
    • 1998
  • The purpose of this study is analyzing the performance of sea water cooling system under various refrigerant pipe length. In sea water cooling system, the increase of refrigerant pipe length cause increases of pressure drops. These pressure drops cause fresh gas in liquid pipe and increase specific volume in gas pipe outlet, so sea water cooling system capacity is decreased by decrease of refrigerant mass flow rate. Sea water cooling system capacity in refrigerant pipe length 70m is decreased more than 30% when compared with pipe length 10m and the decrease of the coefficient of performance is nearly 20%.

  • PDF

The Characteristic of Propane(R290)-Ethane(R170) as Refrigerant in the Cascade Refrigeration System (캐스캐이드 냉동시스템에서 냉매로서의 프로판-에탄 냉매의 성능 분석)

  • Kim, P.H.;Lee, B.H.;Jeong, H.M.;Chung, H.S.;Kim, C.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Nowadays, demands on super low temperature condition for industrial and commercial uses are thriving. Considering of its wide application in the present and the future, study of the super-low temperature refrigeration system should be actively carried out. This study is aimed to investigate refrigeration capacity and coefficient of performance(COP) of the cascade refrigeration system, as well as to get the system which can reach evaporator temperature of $-70^{\circ}C$. For this purpose, R290 and R170 are charged in high stage and low stage respectively. Finally the characteristics of system using R290 and R170 will be proposed. Additionally, In this experiment, the flow rate of air flowing through the LS evaporator and the compressor inlet pressure were varied to investigate the refrigeration capacity and coefficient of performance characteristics.

  • PDF

A Study on the Mixture Formation in a Fuel Injection System (연료분사장치의 혼합기 형성에 관한 연구)

  • ;;;Lee, K. H.;Seo, Y. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2690-2698
    • /
    • 1995
  • Fuel atomization and mixture formation in an gasoline engine has influence on the engine performance and pollutant emission. The throttle valve installed in an intake system plays a greater role in control of mixture quantity in accordance with engine drive condition. In this study, the characteristics of secondary atomization developed at the downstream of the valves were observed using an image processing method. Two major kinds of valves, solid and perforated ones, are chosen in order to compare the valve performance with the experimental parameters of air flow rate, valve opening angle, and valve shapes. For the perforated valve, we can obtain the relatively small sized droplets, and nearly uniformed and dense distributed sprays with low loss coefficient than for the solid valve.

Experimental investigation of heat transfer enhancement in horizontal bundle tubes on absorber (수평관군 흡수기의 전열촉진에 관한 실험적 연구)

  • Moon, Choon-Geun;Seol, Won-Sil;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.328-334
    • /
    • 2000
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different horizontal tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare tube, floral tube, hydrophilic tube. The additive concentration was about $0.05{\sim}5.5mass%$. The heat transfer coefficient was measured as a function of solution flow rate in the range of $0.01{\sim}0.034 kg/ms$. The experimental result were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube.

  • PDF