• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.029 seconds

Numerical Study of Taylor-Couette Flow with an Axial Flow (축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

A Study on the Flow Characteristics of a Turbopump Inducer (터보펌프 인듀서의 유동특성에 관한 연구)

  • Koo, Hyun-Chul;Hong, Soon-Sam;Cha, Bong-Jun;Yang, Soo-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.41-46
    • /
    • 2002
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient $\varphi$=0.087 and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at $\varphi$=0.073.

  • PDF

Characteristics of Exit Flow and Performance of a Turbopump Inducer (터보펌프 인듀서의 출구 유동 및 성능 특성)

  • Hong, Soon-Sam;Koo, Hyun-Chul;Cha, Bong-Jun;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.38-44
    • /
    • 2003
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit, axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component, static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient ${\phi}=0.087$ and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at ${\phi}=0.073$.

Unsteady Nature of a Tip Leakage Vortex in an Axial Flow Fan (축류팬 익단누설와류의 비정상 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.845-850
    • /
    • 2003
  • Unsteady nature of a tip leakage vortex in an axial flow fan operating at a design and off-design operating conditions has been investigated by measuring the velocity fluctuation in a blade passage with a rotating hotwire probe sensor. Two hot-wire probe sensors rotating with the fan rotor were also introduced to obtain the cross-correlation coefficient between the two sensors located in the vortical flow as well as the fluctuating velocity. The results show that the vortical flow structure near the rotor tip can be clearly observed at the quasi-orthogonal planes to a tip leakage vortex. The leakage vortex is enlarged as the flow rate is decreased, thus resulting in the high blockage to main flow. The spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region at higher flow rates than the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition.

  • PDF

A Study on the Heat Transfer Characteristics of Slurry Ice Generator using Scraper (스크레퍼형 슬러리아이스 제빙기의 열전달 특성 연구)

  • Kim, Joung-Ha;Yun, Jae-Ho;Kim, Min-Jun;Kim, Kyu-Jin;Cho, Hyoug-Seok;An, Seong-Kuk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.144-149
    • /
    • 2006
  • In this study ice making characteristics are experimentally investigated for the ice slurry generating system which is pneumatically operated. The experimentations are conducted under the various test conditions such as chilled water inlet temperature, aqueous solution concentration, flow rate of cooling water, scraper pitch and frequency of cylinder stroke. For the above experimental conditions, ice making characteristics of the slurry ice generating system are evaluated in terms of the overall heat transfer coefficient, heat transfer rate and the amount of slurry ice generation. And the experimental results show that the heat transfer rate of the system increases as the flow rate of cooling water solution increases and the concentration of ethylene glycol and inlet temperature of chilled water decreases.

  • PDF

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Effect for CSOs Storage Construction - Analysis of Storm Water Run-off Characteristics in combined sewer system (합류식 하수관거 월류수 저장 시설에 대한 효과 - 강우시 합류식 하수관거에서의 오염물질 유출특성 분석)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Hae-Ryong;Lee, Woong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.949-957
    • /
    • 2011
  • This aim of study was to investigate the characteristics of discharge of pollutants as well as the correlation between flow rate and water quality constituents in a combined sewer system according to the characteristics of rainfall. For the loading rates for each pollutant, the median concentrations of all pollutants except T-N was increased when a CSO took place. The loading rates of BOD, COD, SS, T-N, T-P, Cu and Zn at the CSOs were 328-1255, 25-129, 83-2009, 4-12, 14-51, 5-11 and 5-13 times higher than the DWF (Dry Whether Flow), respectively. Especially, SS loading rate was found to be highest in all pollutants. On the other hand, the range of the first flush coefficient, b for water quality constituents such as BOD, COD, SS, T-N, T-P, Cu and Zn were 0.537-0.878, 0.589-0.888, 0.516-1.062, 0.852-1.031, 0.649-0.954, 0.975-1.015 and 0.900-1.114, respectively. In term of correlation between flow rate and pollutant concentrations, SS concentration was highly correlated to flow rate. However, there was an inverse correlation between EC (Electrical Conductivity) and flow rate because of the high dilution of flow rate. In case of correlation between pollutants, there was a high correlation between SS and T-P.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).

A Numerical Investigation on the Isentropic Efficiency of Steam Turbine Nozzle Stage with Different Nozzle Vane Thickness and Mass Flow Rate (증기 터빈 노즐 베인의 두께 변화와 유량별 등엔트로피 효율 변화에 관한 수치해석)

  • Lee, Jong Hyeon;Park, Hee Sung;Jung, Jong Yun;Kim, Joon Seob;Jung, Ye Lim;Park, Sung Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.685-691
    • /
    • 2017
  • In this study, the influence of mass flow rate on the isentropic efficiency of the steam turbine nozzle stage is investigated. A realistic three-dimensional numerical model, which is based on the compressible Navier-Stokes equations, is developed for the steam phase. The comprehensive conservation laws and a kinetic model for steam are investigated. With two different models for the three-dimensional geometry of the nozzle stage, the pressure and temperature distributions, velocity, Mach number. and Markov energy loss coefficient are calculated. A maximum efficiency of 96.66% is found at a mass flow rate of 0.9 kg/s in model A. In model B, a maximum efficiency of 97.32% is found at a rate of 1.6 kg/s. It is determined that the isentropic nozzle efficiency increases as the Markov energy loss coefficient decreases through a nearly linear relationship.

Analysis of Temperature Effect on Activated Sludge Process at Cheong-Gye Cheon Sewage Treatment Plant (활성오니공법에 있어서 수온이 처리효율에 미치는 영향에 관한 분석 -청계천 하수종말처리장에 대하여-)

  • 이은경
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 1981
  • This study was performed to determine the correlationship between temperature and overall removals of BOD, SS and to demonstrate the effect of temperature on treatment performance. These data for a period from February 1, 1977 to January 31, 1980 were obtained from the Cheong-Gye Cheon Sewage Treatment plant. The results of correlation and stepwise multiple regression analysis were as follows. 1) Secondary effluent BOD and SS showed negative correlationship with water temperature, with correlation coefficient of -0.1710, and -0.1654 respectively. 2) Correlation coefficient of BOD, SS removal rate and water temperature were 0.1823 and 0.0429 respectively. 3) Regresion equation for estimate of BOD removal rate was as follows $\widehat{Y}_1$ (BOD removal rate)=63.9994+0.5442X(water temperature). And BOD removal rate showed non significant change according to the water temperature. 4) Regression equation for estimate of SS removal rate was as follows $\widehat{Y}_2$ (SS removal rate)=61.6881+0.1514X(Water temperature). And SS removal rate showed non significant change according to the water temperature. 5) According to the Stepwise Multiple Regression analysis, water temperature ranked second order in the BOD removal rate estimation and the equation was as follows $\widehat{Y}_1$ (BOD removal rate)=69.7398+0.2665 $X_1$ (Primary effluent BOD)+0.3562 $X_2$ (Water temperature)-0.0122 $X_3(Flow)+4413.271X_4$ (Organic Loading).

  • PDF