• Title/Summary/Keyword: Flow-induced Noise

Search Result 271, Processing Time 0.025 seconds

Experimental Study on Wall Pressure Fluctuations in the Turbulent Boundary Layer on a Flat-Plate (평판 난류경계층에서의 벽 압력섭동에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Hooi-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.722-733
    • /
    • 1999
  • The wall pressure fluctuations of a turbulent boundary layer over a flat plate have been investigated in an anechoic wind tunnel facility. The anechoic wind tunnel consists of acoustically-lined duct, muffler, and splitter-type silencer for noise suppression and vanes for reducing head losses involved. To improve spectra characteristics in high frequency range, a 1/8" pressure-type microphone sensor, which has a pin-holed cap of various diameters, was employed in this experiment. It was shown that the pin-holed microphone sensor with a dimensionless diameter $d^+$ of 7.1 resolved the high frequency pressure fluctuations most effectively among ones with various pin-hole diameters. The measured wall pressure spectra in terms of three types of scaling parameters were in good agreement with other experimental and numerical results. The pressure events of high amplitude were found to contribute to total fluctuating pressure energies in the turbulent boundary layer significantly and supposed to radiate to the far-field effectively.

Vibration Characteristic Analysis of a Duel-cooled Fuel Rod according to the Cross-sectional Dimensions and the Span Length (이중냉각 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.819-825
    • /
    • 2007
  • Vibration characteristics of an duel-cooling cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X (차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구)

  • Lee, Yeong-Bin;Rho, Joo-Hyun;Kwak, Min-Ho;Lee, Jae-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF

Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction (Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석)

  • KANG HO-KEUN;KIM EUN-RA
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

The Vibration Characteristic of Large Main Steam Pipelines in Power Plant (발전소의 대형 주증기배관의 진동 특성)

  • Kim, Yeon-Whan;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.709-715
    • /
    • 1996
  • In recent years, the piping vibration in many Power Plants is being increased by the aged generating facilities due to a long time use. Generally, the pressure fluctuations associated with the flow-induced excitations in this case are broadband in nature. Mainly, the dominant sources of vibration are a vortex-shedding, plane waves and boundary layer turbulence. The peak level of the spectrum is proportional to the dynamic head. A severe disturbance in pipeline results in the generation of intense broadband internal sound waves which can propagate through the piping system. The characteristic frequencies of operating loads of 20%, 57%, 70%, 100% are 4 - 6 Hz and coincide with the results from impact hammering test and FEM analysis. We chose the wire energy absorbing rope restraint as a vibration reduction method after reviewing the various conditions such as site, installing space and economic cost etc. After installation, the vibration level was reduced about 54% in velocity.

  • PDF

Measurement Uncertainty Analysis for Fluctuating Hull Pressure (선미변동압력 계측시험에서의 불확실성 해석)

  • G.I. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.46-60
    • /
    • 1993
  • Accurate measurements of fluctuating pressure in the cavitation tunnel are necessary to predict vibration and noise intensities in full scale ship. In this paper, the results of an experimental study on fluctuating pressure induced by a cavitating propeller are presented and discussed. Extensive measurements at several propeller revolutions are made using the flat plate to understand controversial problems of the effects of propeller revolution in the cavitation tunnel. The analysis of the uncertainties in experimental measurements and results is used to estimate the errors in uniform flow.

  • PDF

A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model (튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

Neutron Noise Analysis for PWR Core Motion Monitoring (중성자 잡음해석에 의한 PWR 노심 운동상태 감시)

  • Yun, Won-Young;Koh, Byung-Jun;Park, In-Yong;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.253-264
    • /
    • 1988
  • Our experience of neutron noise analysis in French-type 900 MWe pressurized water reactor (PWR) is presented. Neutron noise analysis is based on the technique of interpreting the signal fluctuations of ex-core detectors caused by core reactivity changes and neutron attenuation due to lateral core motion. It also provides advantages over deterministic dynamic-testing techniques because existing plant instrumentation can be utilized and normal operation of the plant is not disturbed. The data of this paper were obtained in the ULJIN unit 1 reactor during the start-up test period and the statistical descriptors, useful for our purpose, are power spectral density (PSD), coherence function (CF), and phase difference between detectors. It is found that core support barrel (CSB) motions induced by coolant flow forces and pressure pulsations in a reactor vessel were indentified around 8 Hz of frequency.

  • PDF

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.