• 제목/요약/키워드: Flow-based

검색결과 11,900건 처리시간 0.035초

Active contour와 Optical flow를 이용한 카메라가 움직이는 환경에서의 이동 물체의 검출과 추적 (A Method of Segmentation and Tracking of a Moving Object in Moving Camera Circumstances using Active Contour Models and Optical Flow)

  • 김완진;장대근;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we propose a new approach for tracking a moving object in moving image sequences using active contour models and optical flow. In our approach object segmentation is achieved by active contours, and object tracking is done by motion estimation based on optical flow. To get more dynamic characteristics, Lagrangian dynamics combined to the active contour models. For the optical flow computation, a method, which is based on Spatiotempo-ral Energy Models, is employed to perform robust tracking under poor environments. A prototype real tracking system has been developed and applied to a contents-based video retrieval systems.

  • PDF

RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측 (Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model)

  • 김성구;오군섭;김용모;이창식
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

OOP 개념에 기초한 유동해석용 후처리 프로그램 개발 (Development of a Post-Processing Program for Flow Analysis Based on the Object-Oriented Programming Concept)

  • 명현국;안종기
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.62-69
    • /
    • 2008
  • A post-processing program based on the OOP(Object-Oriented Programming) concept has been developed for flow visualization of the flow analysis code(PowerCFD) using unstructured cell-centered method. User-friendly GUI(GTaphic User Interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes including those based on VTK(Visualization ToolKit)-library, and these classes are made to function through inheritance and cooperation which is an important and valuable OOP concept. The major functions of this post-processor program are introduced and demonstrated, which include mesh plot, contour plot, vector plot, surface plots, cut plot, clip plot, xy-plot and streamline plot as well as view manipulation (translation, rotation, scaling etc).

Optimal Power Flow of DC-Grid Based on Improved PSO Algorithm

  • Liu, Xianzheng;Wang, Xingcheng;Wen, Jialiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1586-1592
    • /
    • 2017
  • Voltage sourced converter (VSC) based direct-current (DC) grid has the ability to control power flow flexibly and securely, thus it has become one of the most valid approaches in aspect of large-scale renewable power generation, oceanic island power supply and new urban grid construction. To solve the optimal power flow (OPF) problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and the optimal operation considering both power loss and voltage quality is realized. Firstly, the fuzzy membership curve is used to transform two objectives into one, the fitness value of latest step is introduced as input of fuzzy controller to adjust the controlling parameters of PSO dynamically. The proposed strategy was applied in solving the power flow issue in six terminals DC grid model, and corresponding results are presented to verify the effectiveness and feasibility of proposed algorithm.

분산전원계통을 위한 3상 최적조류계산 프로그램 개발 (Development of Three Phase Optimal Power Flow for Distributed Generation Systems)

  • 송화창;조성구
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발 (DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME)

  • 이병준;이준석;임진우;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

Self-timed 기반의 Node Label Data Flow Machine 설계 (Design of a Node Label Data Flow Machine based on Self-timed)

  • 김희숙;정성태;박희순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.666-668
    • /
    • 1998
  • In this paper we illustrate the design of a node label data flow machine based on self-timed paradigm. Data flow machines differ from most other parallel architectures, they are based on the concept of the data-driven computation model instead of the program store computation model. Since the data-driven computation model provides the excution of instructions asynchronously, it is natural to implement a data flow machine using self timed circuits.

  • PDF

Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법 (Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow)

  • 이혜정;최윤원;강태훈;이석규
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

How can we Develop Students' Creativity? : Redesigning a Creativity Program based on Flow Theory

  • Park, JaeSung
    • 실천공학교육논문지
    • /
    • 제9권2호
    • /
    • pp.91-98
    • /
    • 2017
  • To produce highly creative students, engineering education must develop both problem recognition skills and the ability to solve problems independently. Chonnam National University has been developing a creativity program in which students identify and solve problems themselves. Initially, the primary focus was on solving problems, but this was unsuccessful at attracting the students' interest. To overcome this, we adopted Csikszentmihalyi's flow theory in our creativity program, much like the way this theory is used in computer games. As a result of adopting flow theory, we achieved our goal. Thus, in this paper, we will introduce Chonnam National University's creativity program (designed based on flow theory), which we will call the Self-Directed Creativity-Upgrade Program. Furthermore, we will discuss the impact of this program based on statistical analyses.

이산요소법을 이용한 보행류 해석 프로그램 개발 (Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method)

  • 남성원;권혁빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF