• Title/Summary/Keyword: Flow-accelerated Corrosion

Search Result 132, Processing Time 0.027 seconds

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

A Study on the Relief of Shell Wall Thinning of High pressure Feedwater Heater (고압형 급수가열기 동체 감육 완화에 관한 연구)

  • Kim, Hyung-Joon;Park, Sang-Hoon;Seo, Hyuk-Ki;Kim, Kyung-Hoon;Hwang, Kyung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2664-2669
    • /
    • 2008
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line- inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

Evaluation of the Burst Pressure for Rectangular Wall-thinning of CANDU Feeder Pipe (사각 감육을 고려한 중수로 공급자관 파열압력 평가)

  • Kwang Soo Kim;Min Kyu Kim;Doo Ho Cho;Jae Joon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The flow accelerated corrosion (FAC) is one of significant aging and degradation mechanism and can affect structural integrity of CANDU feeder pipes. Pipe burst can occur under normal operation pressure (min. 10 MPa) if wall-thinning of the feeder pipe due to FAC is accumulated. Previous studies considered simple shapes of feeder pipe with local wall-thinning in order to conservatively assess structural integrity of wall-thinned feeder pipe. In this paper, a new FE model is developed, having an actual shape of the feeder pipe (double bent) as well as the actual wall-thinning shape and location based on the in-service inspection result. Then, the burst pressure assessment of the wall-thinned feeder pipe is performed using lower bound limit load analysis considering elastic-perfectly plastic material. In addition, an improved formulation to predict the burst pressure of the wall-thinned feeder pipe is presented and the safety margin is compared with an existing assessment method.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

DEPENDENCY OF SINGLE-PHASE FAC OF CARBON AND LOW-ALLOY STEELS FOR NPP SYSTEM PIPING ON PH, ORIFICE DISTANCE AND MATERIAL

  • Moon, Jeong-Ho;Chung, Hung-Ho;Sung, Ki-Woung;Kim, Uh-Chul;Rho, Jae-Seong
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • To investigate the flow-accelerated corrosion (FAC) dependency of carbon steel (A106 Gr. B) and low-alloy steels (1Cr-1/2Mo, 21/4Cr-1Mo) on pH, orifice distance, and material, experiments were carried out. These experiments were performed using a flow velocity of 4 m/sec (partly 9 m/sec) at pH $8.0\~10.0$ in an oxygen-free aqueous solution re-circulated in an Erosion-Corrosion Test Loop at $130^{\circ}\;{\ldots}$ for 500 hours. The weight loss of the carbon steel specimens appeared to be positively dependent on the flow velocity. That of the carbon and low-alloy steel specimens also showed to be distinguishably dependent on the pH. At pH levels of $8.0\~9.5$ it decreased, but increased from 9.5 to 10.0. Utility water chemistry personnel should carefully consider this kind of pH dependency to control the water system pH to mitigate FAC of the piping system material. The weight loss of the specimens located further from the orifice in the distance range of $6.8\~27.2$ mm was shown to be greater, except for 21/4Cr-1Mo, which showed no orifice distance dependency. Low alloy steel specimens exhibited a factor of two times better resistance to FAC than that of the carbon steel. Based on this kind of FAC dependency of the carbon and low-alloy steels on the orifice distance and material, we conclude that it is necessary to alternate the composition of the secondary piping system material of NPPs, using low-alloy steels, such as 21/4Cr-1Mo, particularly when the system piping has to be replaced.

Long Range Cylindrically Guided Ultrasonic Wave Technique for Inspection

  • Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.364-371
    • /
    • 2003
  • In this paper, a review of the current status, on the use of long range cylindrically guided wave modes, and their interaction with cracks and corrosion damage in pipe-like structures will be discussed. Applications of cylindrically guided ultrasonic wave modes have been developed for inspection of corrosion damage in pipelines at chemical plants, flow-accelerated corrosion damage (wall thinning) in feedwater piping, and circumferential stress corrosion cracks in PWR steam generator tubes. It has been demonstrated that this inspection technique can be employed on a variety of piping geometries (diameters from 1 in. to 3 ft, and wall thickness from 0.1 to 6 in.) and a propagation distance of 100 meters or more is sometimes feasible. This technique can also be used in the inspection of inaccessible or buried regions of pipes and tubes.

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF