• 제목/요약/키워드: Flow-Visualization

검색결과 1,513건 처리시간 0.028초

마이크로 유체 원심분리기의 입구 조건과 챔버 크기에 따른 회전 유동 성능 평가 (Performance Evaluation of Rotational Flow of a 2×2 Microfluidic Centrifuge with varying Inlet Conditions and Chamber Sizes)

  • 전형진;권봉현;김대일;김형훈;고정상
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.43-48
    • /
    • 2014
  • This paper describes the measurement of performance evaluation of rotational flow varying chamber size and Reynolds number. Through the experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a chamber width of 250${\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a chamber width of 500 ${\mu}m$, single flow rotation did not appear. For performance evaluation, the intensity in microchamber was measured during 20 sec. At a chamber width of 250 ${\mu}m$, performance of rotational flow increased as Reynolds number increased. However, the variation of intensity in microchamber remained unchanged at a chamber width of 500 ${\mu}m$. The numerical analysis showed that the threshold centrifugal acceleration to obtain rotational flow for ejected particles was 200g.

관내 응축 시 2상유동 단면구조의 가시화 (Visualization of cross-sectional two-phase flow structure during in-tube condensation)

  • ;김형대
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.18-24
    • /
    • 2016
  • This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.

플로우 시각화 기반의 네트워크 보안 상황 감시 (Monitoring Network Security Situation Based on Flow Visualization)

  • 장범환
    • 융합보안논문지
    • /
    • 제16권5호
    • /
    • pp.41-48
    • /
    • 2016
  • 본 논문은 플로우 시각화 기반의 네트워크 보안 상황 감시 방법인 VisFlow를 제안하며, 기존 트래픽 플로우 시각화 기술의 단점인 대량 트래픽 발생 시의 직관성 상실 문제, 대칭적 주소 공간에 의한 반사현상 문제, 종단간 연결 의미의 상실 문제를 해결하고자 한다. VisFlow는 단순하고 효율적인 보안 시각화 인터페이스로써 플로우 시각화 기술을 활용하여 개별적인 트래픽 데이터들에서는 볼 수 없었던 다양한 네트워크 현상들을 패턴으로 형상화하고 관리 네트워크 내의 보안 상황을 실시간으로 분석 및 감시하는 방법이다. 트래픽 플로우의 포트 역할 분석 방법을 이용하여 노드 유형과 중요 정보를 식별 분류하고, 분류된 정보는 중요도에 따라 2D/3D 공간 상에 단순화 및 강조하여 표시함으로써 직관성과 실용성을 높인다. 또한, IP주소값에 기반한 비대칭적 노드 배치를 통해 반사현상 문제를 해결하고 노드간의 연결선을 활용하여 종단간의 세션 의미를 유지함으로써 정보성은 높인다. 관리자는 VisFlow를 통해 방대한 트래픽 데이터를 쉽게 탐색하고 전체 네트워크 상황을 직관적으로 파악함으로써 네트워크 보안 상황을 효과적으로 감시할 수 있다.

미세수적과 레이저 평면광에 의한 와류장의 가시화 연구 (Investigation of Vortical Flow Field Visualization by Micro Water Droplet and Laser Beam Sheet)

  • 이기영;손명환
    • 한국추진공학회지
    • /
    • 제6권1호
    • /
    • pp.55-62
    • /
    • 2002
  • 미세수적과 레이저 평면광을 사용하여 새로운 유동의 가시화 방법을 제안하였다. 미세수적은 약 5 내지 $10\mu\textrm{m}$ 크기로 가정용 초음파 가습기를 사용하여 생성시켰다. 조명은 3 W의 알곤 이온 레이저와 원통형 렌즈를 사용하여 레이저 평면광을 특정 와류장 단면에 형성시켰다. 이와 같은 새로운 유동의 가시화 방법을 측정부의 크기가 $0.9 m(W){\times}$0.9 m(H){\times}2.1 m(L)$$인 공군사관학교의 소형 풍동을 통하여 적용하였다. 가시화 결과를 통하여 미세수적을 이용한 새로운 가시화 방법이 풍동실험에 적용하기에 비교적 용이하며, 안전한 방법임을 보였다. 아울러 이 방법은 일반적으로 풍동실험에 적용되고 있는 스모크 가시화의 단점들을 보완함은 물론, 좀 더 높은 유동속도에서도 적용할 수 있었다.

전산유동 해석을 이용한 수동의 유동 균질성 평가 (Estimation of Flow Uniformity in Water Tunnel by Using CFD Analysis)

  • 임영택;장조원;김문상
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.13-24
    • /
    • 2004
  • It is easier to view flow visualization by using a water tunnel rather than a smoke wind tunnel because of low speed at same Reynolds number. Using a water tunnel also produces more definite flow visualization by the use of various color dyes. The flow uniformity in test section is very significant for accuracy of the test because most flow experiments elicit results through the installation of a model in uniform flow. The purpose of small-size desktop-type water tunnel is not to produce quantitative measurements, but rather to give a visualization of the fluid flow phenomenon. However, uniformity in the test section affects the accuracy of the results. Accordingly, this research estimates uniformity in a water tunnel test section by using the commercially available CFD code FLUENT. Results of the CFD analysis show that the flow uniformity of the test section is good.

  • PDF

사각용기의 고점성 슬로싱 유동에서 발생하는 측벽 코팅 유동 (On the Near Wall Coating Flow in a Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box)

  • 박준상
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.27-35
    • /
    • 2022
  • A problem on the sloshing flow of highly-viscous fluid in a rectangular box was revisited by both of theoretical approach and experimental visualization method. Based on the theoretical prediction that a linear shape of free surface is prevailing in bulk zone, it has been studied an analogy between a near wall coating flow in sloshing problem and dip coating flow in Landau-Levich problem. Phenomenological observation confirms that, in the case of highly-viscous fluid, I.e., Re ≪ 1, viscous dominant near-wall flow in sloshing problem is identical to dip coating flow generated by drag-out of the plate being in both motion of vertical translation and horizontal rotation.

원심 블로어 출구 유동의 정량적 가시화 연구 (Quantitative Visualization of Outlet Flow of the Centrifugal Blower)

  • 도흔승;김성준;박승하;김형범
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.25-29
    • /
    • 2014
  • The outlet flow of the centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower is one of the key parts of electric vehicle battery cooling system, the quantitative information of centrifugal blower is necessary to design and optimize the cooling system. The effect of different inlet flow condition to the outlet flow was investigated in this study. Two different inlet ducts were used. One is the straight inlet and the other is a bended one. The results clearly showed the outlet flow asymmetry in both inlet ducts. When the blower has the bended inlet, the flow rate decreases due to the increase of the head loss.

Time-resolved PIV와 POD기법을 이용한 유량에 따른 단일노즐 버블링 유동 특성에 관한 연구 (Characteristics of Bubble-driven Flow with Varying Flow Rates by Using Time-resolved PIV and POD Technique)

  • 이승재;김종욱;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제6권2호
    • /
    • pp.14-19
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble flow in a rectangular water tank is studied. The Time-resolved PIV technique is adopted for the quantitative visualization and analysis. 532 nm Diode CW laser is used for illumination and orange fluorescent particle images are acquired by a PCO 10bit high-speed camera. To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is changed from 2 l/min to 4 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by the POD analysis technique. It is observed that the large scale counterclockwise rotation and main vortex is generated in the upper half depth from the free surface and one quarter width from the sidewall. When the flow rates are increased, the main vortex core is moved to the side and bottom wall direction.

VOC 회수를 위한 이젝터 시스템에 관한 수치모사 및 실험적 연구 (Numerical Simulation and Experimental Study on an Ejector System for VOC Recovery)

  • 김현동;이동엽;김윤기;정원택;안주하;김경천
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.54-60
    • /
    • 2011
  • This paper is a basic study on volatile organic compounds(VOC) recovery system in a crude oil carrier. VOC is easily evaporated in cargo tankers during loading and transportation of crude oil, causes serious environmental contamination and a huge economic loss. An ejector system is designed to mix VOC gas into crude oil flow to reduce VOC concentration. Detail two-phase flow inside the ejector is simulated using a commercial CFD code. To verify the numerical prediction, a scale-down experiment is conducted. Instead of crude oil and VOC, water and air are used as the working fluids. Flow characteristics and main parameters are obtained by two-phase flow visualization and PIV measurements. Air volume flow rate induced by the ejector is compared with respect to the volume flow rate of water using experimental and numerical results. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화 (Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel)

  • 한수동;이상준
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF