• 제목/요약/키워드: Flow-Visualization

검색결과 1,513건 처리시간 0.028초

LDV Measurement, Flow Visualization and Numerical Analysis of Flow Distribution in a Close-Coupled Catalytic Converter

  • Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2032-2041
    • /
    • 2004
  • Results from an experimental study of flow distribution in a close-coupled catalytic converter(CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC.

구 주위 난류유동에 관한 가시화 연구 (Visualization of Turbulent Flow around a Sphere)

  • 장영일;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2006
  • The turbulent flow around a sphere was investigated using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5300, 11000 and PIV measurements in a circulating water channel. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. The mean velocity field measured using a PIV technique in x-y center plane demonstrates the detailed near-wake structure such as nearly symmetric recirculation region, two toroidal vortices, laminar separation, transition and turbulent eddies. The PIV measurements of turbulent wake in y-z planes show that a recirculating vortex pair dominates the near-wake region.

  • PDF

첨단 유동가시화 기법들과 Blue Ocean 전략 (Advanced Flow Visualization Technologies and Blue Ocean Strategy)

  • 이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF

Influence of Blade Profiles on Flow around Wells Turbine

  • Suzuki, Masami;Arakawa, Chuichi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.148-154
    • /
    • 2008
  • The Wells turbine rotor consists of several symmetric airfoil blades arranged around a central hub, and the stagger angle is 90 degrees. These characteristics simplify the total construction of OWC type wave energy converters. Although the Wells turbine is simple, the turbine produces a complicated flow field due to the peculiar arrangement of blades, which can rotate in the same direction irrespective of the oscillating airflow. In order to understand these flows, flow visualization is carried out with an oil-film method in the water tunnel. This research aims to analyze the mechanism of the 3-D flows around the turbine with the flow visualization. The flow visualization explained the influence of attack angle, the difference between fan-shaped and rectangular wings, and the sweep angle.

원형 모세관과 사각형 단면의 미세채널에서 3차원 수력학적 집속유동 분석 (Analysis of 3-Dimensional Hydrodynamic Focusing in Circular Capillary Tube and Rectangular Microchannel)

  • 윤성희;김경훈;김중경
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.21-26
    • /
    • 2011
  • Hydrodynamic focusing technique to generate focused flow has been used for flow cytometry in microfluidic devices. However, devices with circular capillary tubes made of glass are not suitable for flow visualization or optical signal detection because the rays of light are distorted at the curved interface. We devised a new acrylic chamber assembled with a pulled micropipette and a rectangular microchannel made of glass. This new channel geometry enabled us to visualize the three-dimensional (3D) flow characteristics with confocal imaging technique. We analyzed the 3D hydrodynamic focusing in a circular capillary tube and a rectangular microchannel over a practical range of flow rates, viscosities and pressure drops.

전단흐름 하에 이온교환막 위에서 발생하는 전기수력학적 와류 (Electroconvective vortex on an Ion Exchange Membrane under Shear Flow)

  • 곽노균
    • 한국가시화정보학회지
    • /
    • 제16권1호
    • /
    • pp.61-69
    • /
    • 2018
  • Ion exchange membrane can transfer only cation or anion in electrically conductive fluids. Recent studies have revealed that such selective ion transport can initiate electroconvective instability, resulting vortical fluid motions on the membrane. This so-called electroconvective vortex (a.k.a. electroconvection (EC)) has been in the spotlight for enhancing an ion flux in electrochemical systems. However, EC under shear flow has not been investigated yet, although most related systems operate under pressure-driven flows. In this study, we present the direct visualization platform of EC under shear flow. On the transparent silicone rubber, microscale channels were fabricated between ion exchange membranes, while allowing microscopic visualization of fluid flow and ion concentration changes on the membranes. By using this platform, not only we visualize the existence of EC under shear flow, its unique characteristics are also identified: i) unidirectional vortex pattern, ii) its advection along the shear flow, and iii) shear-sheltering of EC vortices.

분지관 혼합기의 난류 혼합에 대한 유동 가시화 연구(I) (Flow visualization Study on the Turbulent Mixing of Two Fluid Streams(I))

  • 김경천;신대식;이부환
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 1998
  • An experimental study has been carried out to obtain optimal conditions for turbulent mixing of two fluid streams at various angle branches by a flow visualization method. The main purpose of this study is the utilization of flow visualization method as a fast and efficient way to find the optimal mixing conditions when several flow control parameters are superimposed. It is verified that the optimal conditions estimated by flow visualization method have good agreement with the concentration field measurements. The results demonstrate that the diameter ratio is mainly attributed to the mixing phenomena than the branch pipe angle and the Reynolds number. The most striking fact is that there exists the best diameter ratio, d/D.ident. O.17, which requires the minimum momentum ratio in the range of the present experiment. The velocity ratio for the optimal mixing condition has a value within 2 to 16 according to the different flow parameters.

GPU를 이용한 2차원 영상 기반 유동 가시화 기법의 가속 (Acceleration of 2D Image Based Flow Visualization using GPU)

  • 이중연
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.543-546
    • /
    • 2007
  • 유동 가시화란 가시화 기술의 한 영역으로, 벡터 데이터를 2차원 또는 3차원의 형태로 시각적으로 표출하는 것을 말한다. 즉, 일반적으로 벡터 데이터는 (x, y, z)의 형식으로 이루어져 있는 수열의 집합인데, 이를 사람이 그 특징을 쉽게 인지할 수 있도록 그림 또는 애니메이션으로 표시하는 것을 말한다. 유동 가시화 기법에는 여러 가지가 있지만 영상 기반 유동 가시화 기법(IBFV)은 현존하는 조밀한 인티그레이션 기법들 중 가장 빠른 기법 중 하나이다. 본 논문에서는 GPU를 이용해서 영상 기반 유동 가시화 기법을 가속하고 이를 구현했는데, 특히, 메쉬어드벡션 (mesh advection)을 꼭지점 프로그램을 이용해서 가속했다.

  • PDF

회전 원판 위 액막 유동 찢김 가시화 (Visualization of rupturing of rotating films)

  • 김동주;김대겸
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.28-33
    • /
    • 2024
  • We visualized the rupturing of liquid films flowing over a disk rotating with large angular velocity. A setup of high speed imaging for liquid flows on dark and reflective surfaces are suggested. From the result, rivulet structures are revealed to be strongly governed by three-dimensional surface structures developed in the film flow. Additionally, unique flow structures including the rivulet sliding and internal meandering are investigated. Generation mechanism of such structures are discussed in terms of the dynamic contact angle theory.

직선채널과 확대채널에서의 액적 내부 유동 가시화 (Flow Visualization of the Flow inside the Droplet Passing through a Straight and a Diverging Channel)

  • 진병주;김영원;유정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.71-76
    • /
    • 2007
  • Flow visualization of a droplet passing through a straight channel and a diverging channel has been carried out using micro-PIV. Diverging channel is frequently used in lab-on-a-chip and microfluidic devices, where flow pattern inside the droplet passing is quite different from that through a straight channel. In the present study, we visualized the droplet flow in three different regions. The first region is where the droplet has a wide contact area with the channel wall, the second region is characterized with a narrow contact area and the third region is where droplet is detached from the channel wall. Visualization results show that the internal flow inside the droplet passing through the straight channel moves in the opposite direction to the droplet velocity in the near wall exhibiting complex flow patterns. But in the diverging channel the internal flow inside the droplet moves in the same direction as the droplet velocity due to the shear induced by oil phase flow exhibiting rather simple flow pattern.

  • PDF