• 제목/요약/키워드: Flow-Rate Uniformity

검색결과 185건 처리시간 0.027초

CFD에 의한 선박용 DPF/DOC내 배기가스의 유동 균일도 및 특성 연구 (A Study on the Flow Uniformity and Characteristics of Exhaust gas in Diesel Particulate Filter/Diesel Oxidation Catalyst of Ship Diesel Reduction System by Computational Fluid Dynamics)

  • 김윤지;한단비;백영순
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.153-160
    • /
    • 2019
  • 디젤 선박 운행 횟수의 증가로 인한 대기오염이 심각해짐에 따라 선박의 유해배출가스에 대한 규제가 강화되고 있다. 따라서 선박용 디젤 배기 후처리 장치의 개발이 요구되고 배기 처리 장치는 유동 균일도가 높을수록 처리효율이 증가된다. 본 연구에서는 ANSYS Fluent를 이용하여 기존 저감장치, 저감장치 내부의 Baffle 설치시, 배기가스 유량에 따른 배압과 유동 균일도를 시뮬레이션 하였다. 기존 장치조건에서는 시스템 배압이 38 ~ 40 mbar로 나타났으며, 유동 균일도는 DOC 입구와 출구에서 약 84 ~ 92%로 나타났다. 시스템 내부에 Baffle을 설치한 경우 압력이 상승되고 유속 증가로 인해 유동 균일도가 낮아진다. 배기가스 유량을 $7,548kg\;h^{-1}$에서 $3,772kg\;h^{-1}$로 50% 감소했을 때, 낮은 유속에 의해 DOC 입구와 출구의 유동 균일도는 약 1 ~ 3% 증가했다. DPF의 경우 불균일한 유동이 DOC를 균일하게 거쳐 흐른 후 유입되기 때문에 유동 균일도가 98 ~ 99%로 높게 나타났다.

전산유체해석을 이용한 Fan Filter Unit(FFU)의 가이드 베인 형상설계 (CFD Based Shape Design of Guide Vane for Fan Filter Unit)

  • 장준환;안준;명현국
    • 대한기계학회논문집B
    • /
    • 제37권7호
    • /
    • pp.709-716
    • /
    • 2013
  • 팬 필터 유닛 (FFU)은 청정실 천정에 설치되어 정화된 공기를 공급하는 장치이다. FFU가 대형화되면서 출구면에서 속도가 불균일해지고 결과적으로 청정실에서 생산되는 제품의 품질 또는 생산성을 떨어뜨리게 된다. 이러한 문제를 해결하기 위해 가이드 베인이 설치되는데 가이드 베인은 속도를 균일하게 하지만 유동저항을 유발하여 동력이 일정하게 주어진 경우 공급되는 유량을 감소시킨다. 따라서 속도 균일성을 확보하면서 유량 감소를 최소화하는 최적설계가 요구된다. 본 연구에서는 FFU의 외벽과 중앙에 설치된 가이드 베인의 각도와 길이를 변경하면서 수치해석을 수행하여 가이드 베인의 성능 개선 방안을 도출하였다. 외벽에 설치된 가이드 베인의 경우, 형상을 변경하여 유량이 1.5% 감소하는 조건에서 속도 균일도를 3.7% 향상시킬 수 있었다. 중앙 가이드 베인의 경우 유량이 0.7% 감소하는 조건에서 속도 균일도를 2.9% 향상시킬 수 있었다.

The Study on the Uniformity, Deposition Rate of PECVD SiO2 Deposition

  • Eun Hyeong Kim;Yoon Hee Choi;Hyeon Ji Jeon;Woo Hyeok Jang;Garam Kim
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.87-91
    • /
    • 2024
  • SiO2, renowned for its excellent insulating properties, has been used in the semiconductor industry as a valuable dielectric material. High-quality SiO2 films find applications in gate spacers and interlayer insulation gap-fill oxides, among other uses. One of the prevalent methods for depositing these SiO2 films is plasma enhanced chemical vapor deposition (PECVD) favored for its relatively low processing costs and ability to operate at low temperatures. However, compared to the increasingly utilized atomic layer deposition (ALD) method, PECVD exhibits inferior film characteristics such as uniformity. This study aims to produce SiO2 films with uniformity as close as possible to those achieved by ALD through the adjustment of PECVD process parameters. we conducted a total of nine PECVD processes, varying the process time and gas flow rates, which were identified as the most influential factors on the PECVD process. Furthermore, ellipsometry analysis was employed to examine the uniformity variations of each process. The experimental results enabled us to elucidate the relationship between uniformity and deposition rate, as well as the impact of gas flow rate and deposition time on the process outcomes. Additionally, thickness measurements obtained through ellipsometer facilitate the identification of optimal process parameters for PECVD.

  • PDF

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석 (Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators)

  • 윤호원;김영진;이근우;김현진;윤경식;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.550-556
    • /
    • 2022
  • In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구 (Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films)

  • 김기은;나정필;정모세;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

유량분배 매니폴드의 유출유동에 대한 출구형상 영향 해석 (EFFECT OF EXIT SHAPE ON TURBULENT OUTFLOWS IN A DISTRIBUTION MANIFOLD)

  • 이준우;박태선
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.73-79
    • /
    • 2014
  • Three-dimensional turbulent flows of a distribution manifold are studied by a turbulence model. To investigate the geometrical effects of the manifold, the length and area of exit port are changed. From the results, flow structures related to the outflow uniformity are examined and the deparure angles are obtained. The exit configuration depending on the departure angle has advantages to the outflow uniformity. That is, the decreased exit area in the streamwise direction improves the uniformity of exit flow. For the uniform effusion, the change of exit port by departure angle is more effective them the change of exit area.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.

공동주택단지 급수계통의 유량특성에 미치는 감압밸브의 영향 (Influence of Pressure Reducing Valves on Flow Characteristics of the Water Supply System for an Apartment Complex)

  • 김태진;차동진
    • KIEAE Journal
    • /
    • 제12권6호
    • /
    • pp.23-28
    • /
    • 2012
  • Pressure distribution in the water supply system of an apartment complex consisting of 12 buildings and 635 units in total have been investigated numerically. The complex incorporates two zone booster pump system, and around a half of units have pressure reducing valves (PRVs) in them. Calculated hydrostatic pressure without the water flow were compared with their designed and measured counterparts, and they agreed quite well with each other. Then, the pressure and volumetric water flow rate at all units were analyzed, indicating that there are noticeable differences in pressure and flow rate in one unit to another, although the aforementioned minimization technologies of pressure deviation were employed. In order to further reduce the difference in the water flow rate, it is suggested that all the units in the complex have PRVs installed in their water supply system. The effect of setting pressure of the PRVs on the non-uniformity of the flow in each unit and on the reduction of total water supply for the apartment complex have been studied. With the same PRV setting pressure of 3.952 bar (or the gauge pressure of $3.0kg_f/cm^2$), it has been estimated that the suggested system improves the non-uniformity (the coefficient of variation) of the flow rate of apartment complex over the current system, from 8.02% to 6.66%, and reduces the total water supply, from $0.02804m^3/s$ to $0.02766m^3/s$.