• Title/Summary/Keyword: Flow velocity waveform

Search Result 22, Processing Time 0.022 seconds

Effects of the Velocity Waveform of the Physiological Flow on the Hemodynamics in the Bifurcated Tube

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.296-309
    • /
    • 2003
  • The periodicity of the physiological flow has been the major interest of analytic research in this field up to now Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity. pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.

Extraction of Flow Velocity Information using Direct Wave and Application of Waveform Inversion Considering Flow Velocity (직접파를 이용한 배경매질 유속정보 도출과 유속을 고려한 파형역산의 적용)

  • Lee, Dawoon;Chung, Wookeen;Shin, Sungryul;Bae, Ho Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.199-206
    • /
    • 2017
  • Field data obtained from marine exploration are influenced by various environmental factors such as wind, waves, tidal current and flow velocity of a background medium. Most environmental factors except for the flow velocity are properly corrected in the data processing stage. In this study, the wave equation modeling considering flow velocity is used to generate observation data, and numerical experiments using the observation data were conducted to analyze the effect of flow velocity on waveform inversion. The numerical examples include the results with unrealistic flow velocities. In addition, an algorithm is suggested to numerically extract flow velocity for waveform inversion. The proposed algorithm was applied to the modified Marmousi2 model to obtain the results depending on the flow velocity. The effect of flow velocity on updated physical properties was verified by comparing the inversion results without considering flow velocity and those obtained from the proposed algorithm.

A study on the critical reynolds number of steady, oscillatory and pulsating flow in a straight duct (직관덕트내에서 정상유동, 진동유동과 맥동유동의 임계레이놀즈수에 관한 연구)

  • 박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 1998
  • The critical reynolds number in a square-sectional straight duct is investigated experimentally. The experimental study for the air flow in a square-sectional straight duct is carried out to calssify critical Reynolds number on steady flow and unsteady flow. To calssify the critical Reynolds number we obtained velocity waveform by using a hot-wireanemometer and data acquisition system with photocorder.

  • PDF

Design of FMCW radar waveform for flow measurement (유량 측정을 위한 FMCW 레이다 파형 설계)

  • Lee, Changki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Effects of Tsunami Waveform on Energy Dissipation of Aquatic Vegetation (쓰나미 파형이 수중식생의 에너지소산에 미치는 영향)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The present study numerically investigated the influence of the waveform distribution on the tsunami-vegetation interaction using a non-reflected wave generation system for various tsunami waveforms in a two-dimensional numerical wave tank. First, it was possible to determine the wave attenuation mechanism due to the tsunami-vegetation interaction from the spatial waveform, flow field, vorticity field, and wave height distribution. The combination of fluid resistance in the vegetation and a large gap and creates a vortex according to the flow velocity difference in and out of the vegetation zone. Thus, the energy of a tsunami was increasingly reduced, resulting in a gradual reduction in wave height. Compared to existing approximation theories, the double volumetric ratio of the waveform increased the reflection coefficient of the tsunami-vegetation interaction by 34%, while decreasing the transfer coefficient and energy attenuation coefficient by 25% and 13%, respectively. Therefore, the hydraulic characteristics of a tsunami is highly likely to be underestimated if the solitary wave of the approximation theory is applied for the tsunami.

Experimental research on blood sucking phenomena of a female mosquito (암모기 흡혈과정에 대한 실험적 연구)

  • Kim, Bo-Heum;Lee, Jung-Yeop;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1475-1478
    • /
    • 2008
  • We have investigated the blood sucking phenomena of a female mosquito. The main objective of this study is to understand the mosquito's blood sucking mechanism and eventually to develop a bio-mimic technology that can be used to resolve the problem encountered in the transport of infinitesimal biological fluids in various bio-chips and microchips. At first, the consecutive velocity fields of blood-sucking flow in a proboscis were measured using a micro-particle image velocimetry (PIV) system employed with a high-speed camera. The velocity signals of the blood-sucking flow in the proboscis represent a periodic pulsatile flow pattern and spectral analysis on the velocity waveform shows a clear peak at 6.1 Hz.

  • PDF

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

VELOCITY AND ITS DIRECTION MEASUREMENT OF SCATTERER WITH DIFFERENT VELOCITIES USING SELF-MOXING SEMICONDUCTOR LDV

  • Shinohara, Shigenobu;Haneda, Yoshiyuki;Suzuki, Takashi;Ikeda, Hiroaki;Yoshida, Hirofumi;Sawaki, Toshiko;Mito, Keiichiro;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1966-1970
    • /
    • 1991
  • The self-mixing type semiconductor laser Doppler velocimeter(SM-LDV) is applied to measure two simultaneously moving targets with different velocities in the same direction as a prototype target for multiscatterers. The measured beat waveform is found to be a composite wave of each beat waveform measured fran each of only moving target. In the composite waveform, each one-cycle wave has a feature of the sawtooth wave. This fact shows a possibility to discriminate the flow direction of fluid containing multiscatterers with distributed velocities by cooperating an improved version of the direction discrimination circuit already devised by the authors.

  • PDF

Study of Spectral Doppler Waveform Interpretation and Nomenclature in Peripheral Artery (말초 동맥 분광 도플러 파형 해석 및 명명법에 대한 고찰)

  • Ji, Myeong-Hoon;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.649-660
    • /
    • 2022
  • In 1959, Satomura used spectral Doppler ultrasound to express the velocity of red blood cells according to time change, and Kato defined a zero-base line that could tell the direction of blood flow, making it possible to know the direction of blood flow. This became the basis for the widely used classifications of Triphasic, Biphasic, and Monophasic. However, the above classification has limitations that confuse users with the meaning and timing of use in a clinical environment. As a result, the American Society for Vascular Medicine (SVM) and the Society for Vascular Ultrasound (SVU) A consensus document on Doppler waveform analysis was declared by the joint committee. This study tried to review this consensus and to suggest nomenclature and modifiers that can be used in the domestic vascular ultrasound clinical field. The joint committee formed by SVM and SVU recommended that the use of the triphasic waveform and the biphasic waveform be used as a multiphasic waveform rather than being used due to the ambiguity of interpretation. In addition, it was agreed to name the hybrid-type waveform, which is a monophasic and high-resistance waveform, which has always been a problem of interpretation in a clinical environment, as an intermediate resistive waveform. In addition, in order to increase the communication efficiency between the interpreter and the sonographer, waveform analysis was classified into a main descriptor and a modifier, and it was recommended to use a single nomenclature by unifying various synonyms. It is expected that this literature review will provide accurate arterial spectral Doppler waveform interpretation and an agreed-upon nomenclature to radiologists performing vascular ultrasound examination in clinical practice, and will be utilized as basic data that can contribute to the improvement of public health.