• Title/Summary/Keyword: Flow structure

Search Result 4,624, Processing Time 0.038 seconds

FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System (유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석)

  • Doh, D.H.;Sang, J.W.;Hwang, T.G.;Pyeon, Y.B.;Baek, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

Numerical Analysis on the Turbulent Mixing Flow Field of $45^{\circ}$ Impinging Round Jet ($45^{\circ}$ 원형충돌분류의 난류혼합유동장에 대한 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.38-45
    • /
    • 2011
  • The computational flow numerical analysis was introduced to predict thc turbulent characteristics in the mixing flow structure of $45^{\circ}$ impinging round jet. This analysis has been carried out through the commercial fluent software. Realizable(RLZ) k-${\varepsilon}$ was used as a turbulent model. It can be known that mean velocities analysed through RLZ k-${\varepsilon}$ turbulent model comparatively predict well the experiments and show well the elliptic shape of mixing flow structure in the Y-Z plane, but analysed turbulent kinetic energies show somewhat differently from the experiments in certain regions.

The Effect of a Hot-wire Supporter on the Flow Between Corotating Disks in Shroud (밀폐된 동시회전 디스크 유동장에 대한 열선 지지대의 영향)

  • Kong Dae-Wee;Joo Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.663-666
    • /
    • 2002
  • Hard disk drived (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. The distribution of pressure disturbance on disks has relation to flow structure. To investigate the flow structure, time-resolved hot-wire measurements of the circumferential velocity component were obtained for the flow between the center pair of four disks of common radius $R_2$ coretating at angular velocity ${\Omega}$ in a fixed cylindrical enclosure. Hot-wire supporter acts as an obstruction in this case. The effects of rotating speed and size of hot-wire supporter diameter between disks on the flow driven by disks were investigated. Velocity spectra at the fixed space were measured to obtain the structure of inner and outer region in flow field.

  • PDF

Applicable Road Design Method of Debris-Flow Control Structure (토석류 차단시설의 도로적용 설계 방안)

  • Lee, Yong-Soo;Kim, Jin-Hwan;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.243-246
    • /
    • 2009
  • Localized rainfall due to abnormal climate has caused extensive damages killing several tens to hundreds of people for yearly basis. The typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. The recent typhoon, 'Aewinia' of yeat 2006 caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. There are needs to minimize the damages for important structures for repeated heavy rainfalls every year and, especially, because debris flow might be a main cause of road damage, the design criteria and guideline for roads are required to be improved. Therefore, this paper presented design method of debris-flow control structure for road protection.

  • PDF

Maximum Flow in Self-Similar Flow Networks

  • Fathabadi, H.Salehi;Toloo, M.
    • Management Science and Financial Engineering
    • /
    • v.8 no.1
    • /
    • pp.39-51
    • /
    • 2002
  • Special structure of flow networks can reduce the order of the relative existent algorithms. In this paper a special structure of flow network called self-similar f1ow networks is introduced, After describing such networks an efficient algorithm for finding maximum flow is presented. It is shown that this algorithm runs in O(m) time.

Experimental Study on Flow Characteristics of Regular Wave Interacting with Rectangular Floating Structure Using PIV Technique (PIV시스템을 이용한 규칙파중 2차원 사각형 부유식 구조물 주위의 유동특성 연구)

  • Jung, Kwang-Hyo;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.41-53
    • /
    • 2006
  • This experimental study investigated the flow characteristics for regular waves passing a rectangular floating structure in a two-dimensional wave tank. The particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The phase average was used to extract the mean flow and turbulence property from repeated instantaneous PIV velocity profiles. The mean velocity field represented the vortex generation and evolution on both sides of the structure. The turbulence properties, including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow interaction between the regular wave and the structure. The results shaw the vortex generated near the structure corners, which are known as the eddy-making damping or viscous damping. However, the vortex induced by the wave is longer than the roll natural period of the structure, which presents the phenomena opposing the roll damping effect; that is, the vortex may increase the roll motion under the wave condition longer than the roll natural period.

Flow-structure Interaction Analysis for Durability Verification by the Wind Force of Outdoor Evacuation Stairs (옥외형 피난계단의 풍압에 따른 내구성 검증을 위한 유동-구조 연성해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-102
    • /
    • 2020
  • In this study, one-way fluid structure interaction analysis was adapted to verify the durability of the outdoor evacuation stair structure operated in the event of a fire when wind pressure caused by a typhoon was applied. To this end, flow analysis was performed with the flow field around the structure of the evacuation stair in a steady state, and the durability was analyzed through structural analysis such as structural stress, deformation, and fatigue life using these analysis results by fluid data input data for structural analysis. As a result of flow numerical analysis, the air flow was different according to the shape of the evacuation stair structure, and this flow velocity distribution generated by the total pressure on the structure surface. Through the structural analysis results calculated by this total pressure, the safety factor calculated as the maximum stress value was found to be more than the safety factor, and durability was proven by fatigue life and deformation analysis.

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

DESIGN OPTIMIZATION OF AN INDUSTRIAL 3/2 WAY PNEUMATIC VALVE CONSIDERING FLOW-STRUCTURE CHARACTERISTICS (3/2 WAY 공압밸브의 유동-구조적 특성을 고려한 최적설계)

  • Yang, S.M.;Baek, S.H.;Kim, T.W.;Jung, I.S.;Kang, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.605-607
    • /
    • 2011
  • A Study on the flow-structure characteristics of a 3/2 way pneumatic valve is essential for optimizing the performance of ship engines. It is important for the valve to have desirable safety factor am reduced weight from the safety and economic point of view. In this study, we capture flow-structure characteristics of 3/2 way pneumatic valve. This is optimized based on the proper design criteria. The air at a pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. The flow and structure analysis is performed for three cases under maximum stress and safety factor. In optimum design, considering the flow-structure characteristics, we model twenty seven cases by using DOE(design of experiments) method Here, analysis for each cases is performed and then metamodels are created We obtain optimized parameters and then analysis is repeated to compare with the initial model. Finally, the feasibility of the optimum design is verified.

  • PDF

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.