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ABSTRACT

Special structure of flow networks can reduce the order of the relative existent algorithms. In this
paper a special structure of flow network called self—~similar flow networks is introduced, After de—
scribing such networks an efficient algorithm for finding maximum flow is presented. It is shown that
this algorithm runs in O(m) time.

1. INTRODUCTION

In the theory of network flows various types and structures of networks have
been considered. Some types have been only theoretically assumed, but most of
them were born from a variety of applications in the real world [1, 2, 3]. There
have been some considered network structures that have highly affected the order
of the related problem solving algorithms. Layered [6] and serial-parallel [4] net-
works have such structures. Here we introduce a special structure of network
flow which exists in some natural systems and has also applications in computer
networks. We call this structure as self-similar flow network.

Consider the flow network G = (N, A) with nodes s and ¢ as the source and

sink nodes, respectively. Suppose that 7 is an operation that replaces each arc

(1,7) € A by G taking s as i and ¢ as j. The consequential flow network after ap-
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plying n for k times is called the k™ self-similar flow network and is denoted by
G, = (N,, A,). The source and sink of G, are denoted by s, and ¢, respectively.
The flow network G,=(N,, A;), which is the primary flow network,
G =(N, A) is called basic network. The nodes of basic network which are re-

mained in all of the subsequent networks are called basic nodes.

Example 1
Consider the basic network in Figure 1.

s 1 : ' t
Figure 1. Basic network

Applying m on this network results in the network of Figure 2. Basic nodes

in Figure 1 and Figure 2 are bold.

Figure 2. A self—similar flow network

Similarly, the 2™ self-similar flow network will be obtained by applying n on
the 1% self-similar network. It can be shown that applying n on G,_; is equiva-

lent to applying n on the basic network for k times.

2. DEFINITIONS & BASIC CONCEPTS

Now we first state and then prove the relation between the number of nodes and
arcs in the k" self-similar and basic networks. To do this, suppose that m; and
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n; are the number of arcs and nodes in the i self-similar flow network respec-
tively, that is {A;[=m; and |N;|=n;. Furthermore let ny=n, my;=m and

the arcs of the basic network are numbered 1 to m..

Theorem 1: a) m;, = m**!

k.
b) ny=n+(@n-2>m" k21

i=1

Proof: a) By inductionion kif k=1 then by definition of # we have:

m= Y m=m|Al=m?
(i.j)eA

Now suppose that m; = mi+! (J22) then m;,, = Zm =mlA;|=
(u.v)cA;
mi+?,

b) Regarding the 7 operation to construct G,, each arc of the basic net-
work is replaced with G,_;. Since nodes i and j are taken as s and ¢
each arc (i,j) of the basic network adds n,_; -2 nodes to G;. There-

fore
n, =mn,_ —2)+n

and by repeating the evaluation of n,_; for i=1,---,k we get

B,
n, =n+(@ —Z)Zm‘. n
i=1

Lemma 1: The number of G; in G, is m*™", where 1=0,1,, k-1.

Proof: Using Theorem 1, we have:

k-1 _l+1

k4l _ m

m, =m m

Considering 7 and this fact that the number of arcs in G, is

m*ll =01, k-1), the above expression implies that the number of

G, in G, is m*!. u
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Theorem 2: If G, does not include a path from ¢ to s, then there is no path form

t, to s, in G, for k=1,2,---.

Proof: Suppose that k is the smallest index such that G, contains a path from
tp to s,. Let B, =( =1y, 15,14, , i) = s;) be one of these paths. Sup-

pose that i, is a basic node (note that such node exist). Regarding 7

q
there exist two cases:

Case 1. (i;,1;) € Ay. In this case i, is the source node in G, ;. But G,_, is
between two basic nodes in (), thus the subpath (t =i, 1y, -, I, =8) 18
in Gj_;. That is there exist a path from ¢,_; to s,_; which is contra-

diction.

Case 2. (1;,i,) € Ay Suppose that j is the smallest index greater than q such that

Ve Ay, If

i is a basic node. Then either (i;, i;)e A, or (ig 3

j
(ij, ;) € Ay then i, and i; are the source and sink of G,_,, respec-
tively. So there exist a path from ¢, ; to s,; in Gj_;, which is a con-

tradiction. Otherwise, if (i,, i;) € A, then there is a path from ¢, to

i
CES
i; . By repeating this reasoning at most to the number of basic nodes in

P, we find a path from ¢ to sin G, a contradiction. =

It is easy to show that if G contains a path from ¢ to s then, corresponding to
this path, there exists a path from s, to ¢; in G;.

Theorem 3: If G, does not include a directed cycle then there is no directed cy-

clein G, for k=z1.

Proof: Suppose that % is the smallest index such that G; contains a directed
cycle. Let Cj, = (i, 19, =+, i5, 1}) be one of theses cycle. Without lost of gen-
erality, suppose that i, belong to the 1" G, . In G, there exist an in-
teger j such that 2<j<q and does not belong to the I G,,_;. Other-
wise all nodes of C,. belong to the I G, , which is a contradiction.
Note that i; is a basic node. Define P=(i}, ;) as a path from i, to

g
i;- By repeating this process at most to the number of basic nodes in C,,
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we find a P =(y,1;,---,1;) that all of it’s nodes are basic. So P belongs to

the basic network. But P becomes a directed cycle in G, that is a contra-

diction. m

All of the self-similar subnetworks of G, are isomorphic [5] with G,_;.

Suppose that i e N,_;, the set of nodes in G, which are projected on node ¢ are
called the corresponding nodes to node i and denoted by M,k For example the

corresponding nodes to node 1 in Figure 1is M, ={l, 3, 4}. With this definition

we have the following properties:

Property 1: If ie N,_;, and i#s, 4,4, then all members of M} are non-
basic.

Property 2:If i,je N,_,,¢#j and i,j #5,.,t,; then M;k ﬂ]M;? = .
Property 3: If i € N, and i is a basic node then t e M;‘M or Le Mt’i-l .

Property 4: Mfk_1 UZM{:_1 =n.

Theorem 4: Suppose that ie M s’i_l UMt}i_, and je€ N, is the corresponding no-

dein G, then we have:

indegree(i)==indegree(j). indegree(t,_,)

outdegree (i) = outdegree (j). outdegree (s;_, ).

Proof: In using 7 for construction G, we replace each arc (i,j)e A with G,_;
by taking l=4,., and j=t,_,. So for each incoming arc to node j in
G),_1, the number of incoming arc to the corresponding node j in G, is

equal to the number of incoming arc to node t,_,. Thus:
indegree(i)=indegree(j). indegree(t,_,)
Similarly, we can show that
outdegree (i) =outdegree (j). outdegree (sp;). m
Corollary 1: With condition of Theorem 4 we have:

indegree(i)=indegree (j). (indegree (t,))*
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outdegree (i) =outdegree(j). (outdegree (s, Nk

3. MAXIMUM FLOW IN SELF-SIMILAR FLOW NETWORKS

In the following section the problem of maximum flow in self-similar flow net-
works is considered and an algorithm for computing the maximum flow is pro-
vided. It is shown that this algorithm runs in O(m;) time. In the following defi-

nitions the basic networks in G, are numbered in the same order as arc’s num-

bers in the basic network.
In G, we define:

h

x! : The amount of flow of the ;™ arcin the j® basic network.

(=12 -, m&j=12 -, m"

th arcin the j * basic network.

u! : The capacity of the ¢
(=12, m&j=1,2 -, mk
fji : Maximum flow in the ;% G;.

(=12, k-1&j=12 -, m™

Furthermore, let f(u;, ug, -+, t,,) be the maximum flow in the basic network

where u, is the capacity of the i arc.

Theorem 5: Suppose that G contains no path from £ to s. The maximum flow in :
G,, k21 is:

=R D
where
i i-1 i-1 e FT B 1 B2 il =12 e mk
f} - f(fmj—(m—l)’ fmj—(m—2): T fmj )i= ’ y s L J =44, m
P=f@jul, ut) j=12-, m*
Proof: By mathematical induction on k. If k=0 obviously f(-) is the maximum

flow in G. Suppose that the result is valid for G,. Let f}*! for
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i=1,---,m be the maximum flow in the " network of G;.,. Regarding
the 7 operation, it is sufficient to replace the maximum flow in the i*

network of G,., with the capacity of the i arc in G. Since the basic

network contains no path from ¢ to s, and noting Theorem 2 we have:

= R ) .

Now, using Theorém 5 the following algorithm for computing the maximum
flow in a self-similar flow networks is provided. In Theorem 6 we will show that
this algorithm runsin O(m,;) time.

Algorithm MFSSFN
Let f(uy, tg, -, 4,,)be the maximum flow in basic network.
110, 1= f(ul1, j], ul2, 71, -, ulm, j)),
j=1,2 - mh //u§ is stored in u[z, j] and ff in f[i ).
[ =f(fi-1Lmj-(m-D), fi-1Lmj-(n~2)], -, fi-Lmj )
i=1,% -k j=12 - mk?

MaxFlow = f[k,1]

Theorem 6: The MFSSFN algorithm runsin O(in;) time.

Proof: Suppose that the constant p is the number of operations for computing the
maximum flow in G,. Pointing to the concept of basic nodes, the number

of computations in G, is (m+1)p, because G, contains m basic network

and p operations i1s needed for overall computations. Similarly the number
of computations in G, is

@mOm+)+)p=m? +m+1)p

In the same manner, the number of computations in G, will be

Smi|p=t Ly
i=0 m-1
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which is of O(m;). =

Example 2
Consider the following self-similar flow network shown by Figure 3.

12
2
5
3
s o 7 % 3 H
2
15 5
3 2
15
SO
13
2

Figure 3. A self—similar flow network

The basic network of the above network is shown in Figure 4 with
fuy, us, ug) =min{u,, ug +ug}.

Uy
31

Us
Figure 4. Basic network of figure 3

Using MFSSEN algorithm we have:

fP=min{15,9+3} =12, f2=min{7,3+5}=7, fJ=min{52+5}=5
f2=min{3,2+11} =3, fo=min{12,7+3} =10, f¢=min{55+7}=5
O=min{17,15+18} =17, f=min{6,3+10}=6, fJ=min{25+7}=2

fl=min{fY, fS+f3}=min{12,7+5} =12
fs =min{3,10+5} =3
f3 =min{l7,6+2} =8
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f*=fi=min{f],f3+f3}=11

4. CALCULATING ARC’S FLOW

Using MFSSFN algorithm, only the maximum flow value will be obtaincd. In or-
der to compute the arc’s flow first we find the relation between coefficient ma-

trixes of self-similar flow networks. Suppose that A* is the incidence matrix of

G,. To show the relation between A* and A* we consider two cases:

Casea) te M;“ & j # 54, tp_y (I is a non-basic node and j is it's corresponding in
G,_; )- Regarding to the order of enumerating the arcs and gelf-similar

flow networks of previous stages, it is clear that:
a, =(0,,a}_;,0,)

where, af; is corresponding row to node p in Gq, and if node j is in the
" network of G,_;, then 0, and 0, are zero vector in R™ %V and

R;rlk_l(lll‘l) respectively.

Case b) ie M skh ) UM,’i_l. Let je N, be the corresponding node of i. According

to Theorem 4, row afc include a;"_‘l and aZtl repeated indegree(j) and

outdegree (j) times, respectively.

Remembering that the number of G,_, in G, is m and considering the order
of enumerating the arcs, the first m,_; columns of A* are correspondent to the
l th

arcs of the first G,_;. In the same manner, the group that contains m,_,

columns of A* corresponds to the arcs of the ]t G_;- On the other hand, there
exist n basic nodes in G, and the (k-1)" self-similar flow networks can only

have these nodes in common. So these m partitions of A* columns have at most
n rows in common. Thus we have:
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AP =AY Az -, AL

C— k-1 — k-1 ——k—l:i

— k-1, : _
where A; (j=1,---,m) is the same as A% plus ny, —ny_, zero rows. In other

—k-1 . . . _
words, if we omit all zero rows of Aj 1(] =1,---,m) we will obtain A*.
Now we define g j‘ as the flow which must blow over the ;% G; of G,. With
this definition the goal is to find gjO for j=1,2,---, m".

For computing the arc’s flow it is sufficient to solve the following system:

A*X=F
X+S=U ey
X=0,S>0
where
f* . - .
F=10, 2| X=(),U= u}), 8=(8}),0,,-2 is a zero vetro in R™ 2
_f*

and S is the slack vector.

We define:
k
ab_|A 0| o [X] E[F
Im,‘ Imk S U

So system (1) is equivalent to the following system:
A*X=F (2)
X=z0
Theorem 7 (Decomposition Theorem): Consider the following system:

A*X =F
X>0

Solving this system is equivalent to solving the following subsystems:
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A Gi=F} izhk-1-1 j=1,2 - m*"

Gi20
&
A’X. =B =1,2, -, mk
j h J ] T Ay My ) m
X; >0
where
-1 7 _ _
g1+m(j—1) gl
-1 J M1 ] [ gl ]
g2+m(j—1) 0"“) xj J
: ; : 0,..
gi’l -8j M ';,f
i_ mj i_| pi-l | 7 I T&;
Gj - i-1 ’ Fj - f1+m(j—1) ’ Xj - 1 | Bj e 1
Sl+m(j—1) i-1 d.l L
yi-l f2+m(j—1) .
b2+m(j—1_) : T
. - mj m
) fi—:l __dJ N L u] i
gi-1 | Tmi
mj

s; and dj are slack variables and 0,_, is a zero vector in R 2

Proof: We replace each G,_, in G, by an arc. Regarding to the definition of

self-similar flow networks, the consequential network is a basic net-
work. We enumerate the arcs of the consequential basic network.

Therefore the i* arc is corresponding to the i, Gy, G=1,2,--,m).
Using the definition of f ji we let the capacity of the (™ arc equal to

f*!. On the other hand, by definition of g} we have g/ =/". So by

solving the following system we obtain the flow of the consequential basic
network:

A’ G} =F!

Obviously, the flow of the i* arcis equal to g* (i =1,2,---, m) which is ob-

tained by solving the above system. To determine the flow of arcs in G,_; it is

sufficient to solve the following systems:
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AMTX; =G j=1,2,,m

For solving each one of these systems we can use the above process. In other

word, we replace each G, , in all G, ; by an arc. After using this process,

g;’( j=1,2, -, m*) will be obtained. At the end, for finding x}’ it is sufficient to

solve the following systems:
AOijBj j=1,2 -, mk =

Now, using the above Theorem the following algorithm computes the maxi-
mum flow in a self-similar flow network.

Algorithm MXSSFN
Let subroutine Mat_Opr (@,,a,,,a,,b,¢1,¢9,+,c,,) solves system

Afa, - a, s 8,1  =[b-=bc ¢ I

m
i-1 i-1 i gi-l -1
CallMat_Opr (g1l+m(j—l)"”’gl§1j ’g;’ fl:-m(j—l)"”’fIrLLj )
i=kk-1--1 j=1,2 - mk?
Call Mat_Opr (x},--, &%, g7, u}, -, uf")

j=1,2’ Tt Ink

Theorem 8: The MXSSFN algorithm runs in O(m;) time.

Proof: Suppose that p is the necessary operation for solving the subsystem

A’ X =B. In running MXSSFN algorithm we need to solve the system

k . k41
A’°X =B for zyn‘ = —n—l——ll times. The number of operations p and m
1=0 m-

are constant and m,, = m**1, so the algorithm runs in O(m;) time. m
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