• Title/Summary/Keyword: Flow structure

Search Result 4,621, Processing Time 0.044 seconds

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

The Comparison of Existing Synthetic Unit Hydrograph Method in Korea (국내 기존 합성단위도 방법의 비교)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.659-672
    • /
    • 2001
  • Generally, design flood for a hydraulic structure is estimated using statistical analysis of runoff data. However, due to the lack of runoff data, it is difficult that the statistical method is applied for estimation of design flood. In this case, the synthetic unit hydrograph method is used generally and the models such as NYMO method, Snyder method, SCS method, and HYMO method have been widely used in Korea. In this study, these methods and KICT method, which is developed in year 2000, are compared and analyzed in 10 study areas. Firstly, peak flow and peak time of representative unit hydrograph and synthetic unit hydrograph in study area are compared, and secondly, the shape of unit hydrograph is compared using a root mean square error(RMSE). In Nakayasu method developed in Japan, synthetic unit hydrograph is very different from peak flow, peak time, and the shape of representative unit hydrograph, and KICT method(2000) is superior to others. Also, KICT method(2000) is superior to others in the aspects of using hydrologic and topographical data. Therefore, Nakayasu method is not a proper in hydrological practice. Moreover, it is considered that KICT model is a better method for the estimation of design flood. However, if other model, i.e. SCS method, Nakayasu method, and HYMO method, is used, parameters or regression equations must be adjusted by analysis of real data in Korea.

  • PDF

Development of Rain Shelter for Chinese Cabbage Rainproof Cultivation (배추재배용 비가림하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • This study was carried out to develop rain shelter which can make an appropriate size and environment for Chinese cabbage rainproof cultivation. Fifty three farms with chinese cabbage rainproof cultivation system have been investigated to set up width and height of rain shelter. Mostly the width of 6m was desired for rain shelter and the height of 1.6m for their eaves, so these values were chosen as the dimensions for rain shelter. After an analysis of their structural safety and installation costs by the specifications of the rafter pipe, Ø$25.4{\times}1.5t$ and 90cm have been set as the size of rafter that such size costs the least. This size is stable with $27m{\cdot}s^{-1}$ of wind velocity and 17cm of snow depth. Therefore it is difficult to apply this dimension to area with higher climate load. In order to sort out such problem, the rain shelter has been designed to avoid damage on frame by opening plastic film to the ridge. Once greenhouse band is loosen by turning the manual switch at the both sides of rain shelter and open button of controller is pushed then switch motor rises up along the guide pipe and plastic film is opened to the ridge. Chinese cabbage can be damaged by insects if rain shelter is opened completely as revealed a field. To prevent this, farmers can install an insect-proof net. Further, the greenhouse can be damaged by typhoon while growing Chinese cabbage therefore the effect of an insect-proof net on structural safety has been analyzed. And then structural safety has been analyzed through using flow-structure interaction method at the wind condition of $40m{\cdot}s^{-1}$. And it assumed that wind applied perpendicular to side of the rain shelter which was covered by insect-proof net. The results indicated that plastic film was directly affected by wind therefore high pressure occurred on the surface. But wind load on insect-proof net was smaller than on plastic film and pressure distribution was also uniform. The results of structural analysis by applying pressure data extracted from flow analysis indicated that the maximum stress occurred at the end of pipe which is the ground part and the value has been 54.6MPa. The allowable stress of pipe in the standard of structural safety must be 215 MPa or more therefore structural safety of this rain shelter is satisfied.

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Kinematics of the Northern Filament in Orion Molecular Clouds Complex Using 12CO Molecular Observation Data (12CO 분자선 관측 자료를 이용한 오리온 분자운 복합체내 북쪽 필라멘트의 운동학 연구)

  • Jo, Hoon;Sohn, Jungjoo;Kim, ShinYoung;Lee, JeeWon;Kim, Sungsoo S.;Morris, Mark
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.519-532
    • /
    • 2018
  • We investigated the effect of galactic plane toward molecular motion and kinematics in the northern filament (NF) of Orion Molecular Clouds Complex (OMC) using $^{12}CO$ (J=1-0) line. Observed data were from three areas including NF1, NF2, and NF3 in far-out order from galactic plane, for a total 270 hours by Seoul National University Radio Astronomy Observatory (SRAO) 6m telescope, with 2arcmin spatial resolution. galactic plane and OMC NF were connected to each other along the magnetic field at a density of 3% for $^{12}CO$ (J=2-1) and 9% for the case of dust. $^{12}CO$ (J=1-0), $^{12}CO$ (J=2-1), and interstellar dusts were distributed uniformly in NF3, but only in certain regions with relatively high density in NF1 and NF2. NF showed a single structure, partial shrinking motion in NF1, and rotational motion at the bottom of NF2, and spiral rotation associated with magnetic field only in NF3. The position-velocity analysis showed that the materials including $^{12}CO$ (J=1-0) could flow toward galactic plane along NF2 and NF3. However, there was no clear cause for the material to flow toward galactic plane in this result. Further detailed observation for rotational motion at the top of NF1 and NF2 might help to confirm it.

Structuration of Space Change due to Planning and Leisure Activities in Hangang River Park - Focused on the Hangang River Park in Yeouido from the 1970s to the 2000s - (여가 활동 공간으로서 여의도 한강공원 공간변화의 구조화 - 1970년대부터 2000년대까지 여의도 한강공원의 여가 활동과 계획을 중심으로 -)

  • Cho, Han-Sol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.13-27
    • /
    • 2019
  • This study shows the changes in the space created by the planning and leisure activities of Hangang River Park, focusing on the Yeouido portion of the Hangang River Park, which has the most users and the greatest degree of planning. The relationship between planning, behavior, and space changes are explained based on Giddens's Structural Theory. As research material, Hangang River Park plans and satellite photos were interpreted and newspaper articles were used to identifying the space changes and their causes, and a model of the space changes was derived through the application of the theory. The flow of space change in the Yeouido portion of the Hangang River Park due to planning and leisure activities is as follows. In the 1970s, the first sports spaces are made due to need from residents near the riverside, but huge plans for the utilization of the entire space were not realized. In the 1980s, leisure spaces were planned and developed through a comprehensive plan. Various sports spaces were built, but the environment of the spaces became a slum. In the 1990s, various leisure activities were revitalized due to the revision of the legal system, regulations on the usage of space, and space maintenance, and from the late 1990s, ecological issues arose along the Hangang River. In the 2000s, there was an overall space improvement project directed by two comprehensive plans, and cultural and ecological issues appeared in the Hangang River Park plans. However, actual leisure spaces were developed along with the promotion of large-scale activities. Regarding the structuration theory, elements of interaction, modality, and structure are the aspects of space changes in the Yeouido portion Hangang River Park. As the flow of the space change, the proportions of the comprehensive plan and the individual plans were similar. The comprehensive plan was influenced by the change of public businesses and the proliferation of large-scale activities. Individual plans were influenced by the user's activities and opinions. However, both plans were influenced by the users and suppliers. The leisure space of the Hangang River Park can be viewed as a social space, in terms of the structuring as a theory due to the user repeatedly changing the use of the space. The purpos of this study is to investigate the changes in the Hangang River Park space through planning and leisure activities. Through this study, we can understand the characteristics of the Hangang River Park in planning the leisure activity space.

Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017 (2016~2017년 동중국해 북부해역의 초미소식물플랑크톤 분포 특성)

  • Park, Kyung Woo;Yoo, Man Ho;Oh, Hyun Ju;Youn, Seok Hyun;Kwon, Kee Young;Moon, Chang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.93-108
    • /
    • 2019
  • To investigate the temporal-spatial distribution of picophytoplankton in relation to different water masses in the northern East China Sea (ECS), picophytoplankton abundance were investigated using flow cytometry with environmental factors in 2016-2017. The results from the analysis of flow cytometer data showed that Synechococcus appeared across all seasons, exhibiting its minimum abundance in winter and maximum abundance in summer. Furthermore, high abundance was detected in the surface mixed layer during spring and summer when vertical stratification occurs; in particular, Synechococcus exhibited maximum abundance in thermocline layer, indicating a close correlation to water temperature and thermocline formation. In addition, the abundance of Synechococcus indicated a decrease in the western seas in 2017 compared to 2016 under the strong influence of the Changjiang Diluted Water (CDW). This was determined by the significant influence of the CDW on the abundance of Synechococcus during summer in the northern waters of the ECS. In contrast, Prochlorococcus did not appear during winter and spring, and its distribution was limited during summer and autumn in the eastern seas under the influence of the Kuroshio current. The largest range of Prochlorococcus distribution was confirmed during autumn without the influence of the CDW. Thus, the distribution pattern of each picophytoplankton genus was found to be changing in accordance to the extension and reduction of sea current in different seasons and periods of time. This is anticipated to be a useful biological marker in understanding the distribution of sea currents and their influence in the northern waters of the ECS.

Determination of Stream Reach for River Environment Assessment System Using Satellite Image (위성영상을 활용한 하천환경 평가 세구간 설정)

  • Kang, Woochul;Choe, Hun;Jang, Eun-kyung;Ko, Dongwoo;Kang, Joongu;Yeo, Hongkoo
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.179-193
    • /
    • 2021
  • This study examines the use of satellite images for river classification and determination of stream reach, which is the first priority in the river environment assessment system. In the river environment assessment system used in South Korea, it is proposed to set a stream reach by using 10 or 25 times the width of the river based on the result of river classification. First, river classification for the main stream section of Cheongmi stream was performed using various river-related data. The maximum likelihood method was applied for land cover classification. In this study, Sentinel-2 satellite imagery, which is an open data technology with a resolution of 10 m, was used. A total of four satellite images from 2018 was used to consider various flow conditions: February 2 (daily discharge = 2.39 m3/s), May 23 (daily discharge = 15.51 m3/s), June 2 (daily discharge = 3.88 m3/s), and July 7 (daily discharge = 33.61 m3/s). The river widths were estimated from the result of land cover classification to determine stream reach. The results of the assessment reach classification were evaluated using indicators of stream physical environments, including pool diversity, channel sinuosity, and river crossing shape and structure. It is concluded that appropriate flow conditions need to be considered when using satellite images to set up assessment segments for the river environment assessment system.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.