• 제목/요약/키워드: Flow speed

검색결과 4,102건 처리시간 0.026초

저유량 고비속도 원심압축기 임펠러에서의 팁간극에 따른 효과 (Tip Clearance Effect of Low Mass Flow Rate High Specific Speed Centrifugal Impeller)

  • 임강수;김양구;김귀순
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2008
  • In this paper, the design of Centrifugal Compressor which is used in sizes 50 horse power has 8 pressure ratio and numerical analysis of the flow within compressor varying tip clearance length are performed. To get high pressure ratio with low power the exit height of impellers is low but compressor has very high speed of revolution. So compressor has high specific speed although mass flow rate is very small. The shape of impellers at the first stage is carried out. Flow and performance characteristics of impellers has been analyzed by using a commercial CFD program, $Fine^{TM}$/turbo. The result shows that loss coefficient is affected by tip clearance length and compressor has proper tip clearance length. It is possible to decrease loss by selecting apt tip clearance length.

  • PDF

Performance Analysis of a Flow Passage Opening Device through Low Speed Aircraft Captive Flight Tests

  • Jung, Sung-Min;Park, Jeong-Bae
    • International Journal of Aerospace System Engineering
    • /
    • 제4권2호
    • /
    • pp.5-9
    • /
    • 2017
  • In a pressurized fuel supply system of aircraft, a flow passage opening device is required to keep fuel continuously transferred from one tank to the other. The device utilizes balancing weights in order to follow up an acceleration at special conditions such as negative g. It is very difficult to test the device in a real high-speed and high-altitude test since severe test conditions and expensive supports are needed. Therefore, this paper deals with performance analysis of a flow passage opening device through low speed aircraft captive flight tests (CFT) including roll and negative-g maneuvers. It is shown that balancing weights in the device can open the passage in accordance with fuel position.

자갈비산 메커니즘 규명을 위한 고속철도차량 하부 유동장 수치 해석 및 시험 (Substructure flow analysis and experiments of high speed train for researching the mechanism of ballast dispersion)

  • 권혁빈;박춘수;강형민;이동호;이도형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.275-280
    • /
    • 2003
  • The Korean high speed train is designed to run at very high speed such as 350km/h. At this time, ballast in roadbed is dispersed by high speed air flow and this hits the substructure of the train. It becomes the factor of damaging the train. To investigate the main factor and possibility of ballast dispersion, the substructure flow is measured by Kiel-Probe Array System at G7 train experiment. And the wind tunnel experiment is performed with ballast in our research. Also CFD analysis is performed by assuming that the flow field is 2D and using simple shaped cross-tie and flat substructure of the train. By comparing the experimental results and CFD analysis, the accuracy of the analysis is checked. They will become the basic research data for the analysis and optimization of train substructure to prevent the ballast dispersion.

  • PDF

비정렬 혼합격자 기반 유동해석 기법 소개 (INTRODUCTION TO UNSTRUCTURED HYBRID MESH BASED FLOW SIMULATION TECHNIQUE)

  • 안형택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.112-115
    • /
    • 2009
  • In this paper, flow simulation algorithms for utilizing unstructured hybrid meshes are introduced. First, various types of meshes are introduced. Advantages and disadvantages of each type of meshes are discussed. Unstructured hybrid mesh approach, that is best suited for high speed viscous flow simulation, is presented. Lastly, various types of flow simulations using unstructured hybrid meshes are introduced.

  • PDF

강우 강도에 따른 일반국도 지방부 도로의 평균속도 변화 분석 (Analysis of Provincial road in National Highway Average Speed Variation According to Rainfall Intensity)

  • 김태운;오주삼
    • 한국콘텐츠학회논문지
    • /
    • 제15권4호
    • /
    • pp.510-518
    • /
    • 2015
  • 기상조건이 교통 상황에 미치는 영향은 이미 알려진 사실이나 관련 연구는 부족한 실정이다. 이에 본 연구에서는 일반국도 지방부 도로에서 강우 수준에 따른 속도 변화를 분석하였다. 분석결과 강우 시 평균속도는 3.2% 감소하였고 교통량이 방향별로 200대/시 이하인 경우 최대 8.8% 감소하는 것으로 분석되었다. 이는 지방부 도로의 경우 자유 교통류 상황에서의 속도가 상대적으로 크게 감소했기 때문으로 판단된다. 또한 속도-교통량 그래프를 활용하여 강우 시 속도 감소 모형을 추정하고 통계 검증을 수행하였다. 추정된 모형은 강우 수준이 높을수록 기울기가 완만해졌으며, 이는 자유 교통류 상황에서의 속도가 상대적으로 크게 감소한 결과이다.

연속류 시설의 이동병목구간에서 지체산정방법 -모의실험을 통한 교통류의 평균지체분석- (The Analysis of Traffic Flow Characteristics on Moving Bottleneck)

  • 김원규;정명규;김병종;서은채;김송주
    • 정보통신설비학회논문지
    • /
    • 제8권4호
    • /
    • pp.170-181
    • /
    • 2009
  • When a slow-moving vehicle occupies one of the lanes of a multi-lane highway, it often causes queuing behind, unlike one is caused by an actual stoppage on that lane. This happens when the traffic flow rate upstream from the slow vehicle exceeds a certain critical value. This phenomena is called as the Moving Bottleneck, defined by Gazis and Herman (1992), Newell (1998) [3], and Munoz and Daganzo (2002), who conducted the flow estimates of upstream and downstream and considered slow-moving vehicle speed and the flow ratio exceeding slow vehicle and the microscopic traffic flow characteristics of moving bottleneck. But, a study of delay on moving bottleneck was not conducted until now. So this study provides a average delay time model related to upstream flow and the speed of slow vehicle. We have chosen the two-lane highway and homogeneous traffic flow. A slow-moving vehicle occupies one of the two lanes. Average delay time value is a result of AIMSUN[9], the microscopic traffic flow simulator. We developed a multiple regression model based on that value. Average delay time has a high value when the speed of slow vehicle is decreased and traffic flow is increased. Conclusively, the model is formulated by the negative exponential function.

  • PDF

액체로켓엔진의 유량조절에 가변밸브의 조절기법과 플런저 형상이 미치는 영향 (Effect of Control Method and Plunger Profile of Variable Valve on Flow Control of a Liquid Rocket Engine)

  • 이중엽;허환일
    • 한국추진공학회지
    • /
    • 제15권5호
    • /
    • pp.35-47
    • /
    • 2011
  • 추력 및 혼합비 조절을 목적으로 제작된 유량조절밸브를 AMESim(4.3.0) 시뮬레이터를 통해 모델링 을 수행했다. BLDC 모터(Brushless D.C. motor)를 이용하는 유량밸브의 조절을 위하여 속도조절기법을 제안했으며, 실험을 통해 그 성능을 보였다. BLDC 모터의 속도제어 기법을 이용하는 조절밸브는 P제어 보다 시스템 활용 시 용이하고, 유량조절 실험결과를 통해 시스템에 적용 가능성을 시사했다. 플런 저 형상에 따라 유량 조절 특성을 평가했고, 두 개의 조절밸브를 이용하는 혼합비 조절의 경우 동일한 플런저 형상을 적용하는 것이 적절했다. 혼합비 조절 시 섭동 폭을 줄이기 위해 밸브 플런저의 형상을 수정한 결과 0.5%로 감소했다.

폴리아세탈의 입자유동베드 가공에서 회전속도와 공기 유량이 재료제거 특성에 미치는 영향 (Effect of Rotating Speed and Air Flow Rate on Material Removal Characteristics in Abrasive Fluidized Bed Machining of Polyacetal)

  • 장양제;김태경;황현덕;서준영;이다솔;이현섭
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.214-219
    • /
    • 2017
  • Abrasive fluidized bed machining (AFBM) is similar to general abrasive fluidized machining (AFM) in that it can perform polishing of the outer and inner surfaces of a 3-dimensional shape by the flow of particles. However, in the case of AFM, the shear force generated by the flow of the particles causes material removal, while in AFBM, the abrasive particles are suspended in the chamber to form a bed. AFBM can be used for deburring, polishing, edge contouring, shot peening, and cleaning of mechanical parts. Most studies on AFBM are limited to metals, and research on application of AFBM to plastic materials has not been performed yet. Therefore, in this study, we investigate the effect of rotating speed of the specimen and the air flow rate on the material removal characteristics during AFBM of polyacetal with a horizontal AFBM machine. The material removal rate (MRR) increases linearly with increase of the rotating speed of the main shaft because of the shear force between the particles of the fluidized bed and the rotation of the workpiece. The reduction in surface roughness tends to increase as the rotating speed of the main shaft increases. As the air flow rate increases, the MRR tends to decrease. At a flow rate of 70 L/min or more, the MRR remains almost constant. The reduction of the surface roughness of the specimen is found to decrease with increasing air flow rate.

전향 스윕 프로펠러 홴의 성능 및 유동특성 (Performance and Flow Characteristics of a Forward Swept Propeller Fan)

  • 김진권;강신형
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.75-84
    • /
    • 2000
  • Performance and flow characteristics of a small forward swept propeller fan for home refrigerators are studied experimentally. An unusual discontinuity is observed in the performance curve of the fan. Mean flow fields measured with as-hole Pitot probe reveal that the flow is axial at the high flow rate and radial at the low flow rate. The flow structure changes abruptly across the discontinuity. Unsteady flow measurements with a set of hot-wire probes indicate that near the discontinuity a single-cell stall rotates at 40% speed of the fan speed, while away from the discontinuity the flow shows periodic variation corresponding to the blade passage frequency. Phase-lock averaged flow fields measured with a triple-sensor hot-wire probe show that there appears radially inward flow over the pressure side of the blade and the outward passage flow over the tip.

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.