• 제목/요약/키워드: Flow regime analysis

검색결과 198건 처리시간 0.024초

전산유체공학 기법을 활용한 해안 방재림 조성 효과 분석 (ANALYSIS ON THE COMPOSITION EFFECT OF FOREST FOR DAMAGE PREVENTION USING CFD)

  • 박태완;장세명;김성용;이영진;윤호중
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.69-76
    • /
    • 2013
  • To reduce the damage from the coastal disaster such as typhoon and tsunami, a possible option is the eco-friendly approach to minimize the destruction of ecological system. One of feasible idea is the forest for damage prevention artificially arranged along the beach. To understand a precise physics on the flow before and after the forest, we use a CFD method. In this paper, a three-dimensional numerical model has been constructed based on tree cases in a real forest located at Byin-myeon, Seocheon-gun, Chungnam. The CFD computation using a commercial code COMSOL multiphysics is performed for the distribution of real spatial coordinate of each tree. Through this investigation, the CFD techniques are shown to be applied to the research of forest composition plan. The physics in the regime from laminar to turbulent flow is qualitatively explained, and the obtained data are compared one another quantitatively.

자연하천에서 하도의 물리적 특성과 하상재료의 상관관계분석 (Analysis of Correlation on Physical Characteristics and Bed Materials in Natural Rivers)

  • 김기흥
    • 한국환경복원기술학회지
    • /
    • 제13권2호
    • /
    • pp.95-104
    • /
    • 2010
  • The purpose of this study is to analyze the correlation between physical stream characteristics and bed materials in natural rivers. Accordingly, four natural rivers were selected reference streams, they were Nam river, Sumjin River, Naesung River and Han River. Grain size distributions of bed materials were gravels, cobbles and boulders in Han river and Nam river, were sand, gravels, cobbles and boulders in Sumjin river and were sand in Naesung river. Four reference streams were divided into each two reference reaches (straight and bend) by plan and profile characteristics of naturally meandering stream. Therefore various reference reaches were chosen in the aspect of physical stream characteristics and grain size distributions. The results investigated and analyzed are as follows. The streams that grain sizes distributions of river bed materials were coarse were stable because they had variety of bed slope without sediment deposition, and then the riffles frequency and the physical characteristics were various. Also, velocitydepth regime were various in four kinds, and the response parts for water level change were small, so that channel flow status were stable and excellent condition. On the other hand, sand river that grain sizes distributions of river bed materials were fine had not the variety of parameters as velocity-depth regimes, sediment deposition, channel flow status and riffles frequency, so that the physical stream characteristics were not various.

2D 추력편향 노즐 성능 및 유동 해석 (Investigation of the 2D Convergent-Divergent Thrust Vectoring Nozzle)

  • 김윤희;최성만;장현수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.483-486
    • /
    • 2009
  • 항공기의 초음속 배기노즐에서 피치 및 요 편향과 함께 가변으로 작동하는 추력편향 노즐에 대한 연구를 수행하였다. 최대속도 마하 1.8, 비행 반경 400Nm에 대한 가상의 항공기에 대한 엔진모델을 생성하여, 항공기의 각 작동영역에 대한 싸이클 해석을 수행하여 추력편향 노즐의 기본사양을 구성하였다. 이를 바탕으로 2차원 추력편향 노즐을 설계하고, 유동 분석은 피치 및 요각의 편향에 의해 수행되어졌다.

  • PDF

기체-고체 유동층에서 Chaos 파라메타에 의한 흐름영역의 해석 (Analysis of Flow Regimes by Using Chaos Parameters in Gas-Solid Fluidized Beds)

  • 송평섭;최왕규;정종헌;오원진;강석환;손성모;강용
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.93-99
    • /
    • 2006
  • 기체-고체 유동층 시스템에서 유동화 흐름영역을 결정할 수 있는 방법들에 대하여 고찰하였다. 기체-고체 시스템의 흐름영역 해석을 위한 상태변수로 상승관내에서의 압력요동을 측정하여 유동화 흐름영역을 해석하였으며, 차압변환기로부터 얻은 압력요동의 자료를 기존의 방법인 평균 및 표준편차를 사용하여 해석하였을 뿐만 아니라, 상관차원이나 Kolmogorov 엔트로피와 같은 chaos 해석 방법을 이용하여 기체-액체 유동층에서 흐름영역을 고찰하였다. 그 결과, 기체-고체 유동층에서 유동화 영역은 평균과 표준편차와 같은 통계적 방법에 의해 결정할 수 있었을 뿐만 아니라, 상관차원과 Kolmogorov 엔트로피와 같은 Chaos 해석방법으로도 유동화영역을 구별할 수 있는 특성으로 사용할 수 있었다.

벌새의 비행메커니즘과 유동특성에 대한 2차원 수치해석 연구 (A Two-dimensional Numerical Study of Hummingbird's Flight Mechanisms and Flow Characteristics)

  • 이현도;김진호;김종암
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.729-736
    • /
    • 2009
  • 벌새(Selasphorus rufus)의 날갯짓 운동에 의한 양력발생 및 추력발생 메커니즘을 이해하고자 2차원 수치해석을 수행하였다. 날갯짓 운동의 궤적은 풍동 실험에서 관찰된 결과를 모델링하여 해석하였다. 비행속도에 따라 날갯짓 운동 궤적이 달라지고, 그 결과 양력 및 추력의 발생 메커니즘이 변화하는 것을 알 수 있었다. 본 연구에서는 이를 통하여 비행속도를 저속비행과 고속비행으로 구분하여 물리적인 이해를 하고자 하였다. 양력발생의 경우에는 기존의 날갯짓 비행의 주된 양력발생 메커니즘인 앞전와류효과(Leading Edge Vortex Effect), 실속지연(Delayed Stall), 후류포착(Wake capture)등의 메커니즘을 확인하였으며, 벌새에서 유일하게 관찰되는 Upstroke에서의 양력발생 메커니즘을 유동특성 분석을 통하여 확인하였다. 추력발생의 경우에는 벌새의 골격 구조, 와류형성 및 압력구배에 따른 합력 성분의 분해를 통하여 이해할 수 있었다.

정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석 (II) - 안전밸브 유동 해석 및 필요분출면적 - (Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station (II) - Flow Analysis and Required Effective Discharge Area of Safety Valve -)

  • 권혁록;노경철;김영섭;이성혁
    • 한국가스학회지
    • /
    • 제12권2호
    • /
    • pp.105-109
    • /
    • 2008
  • 안전밸브는 정압기지 내에 정압기의 파괴 또는 관 내 수분의 응축 등으로 인한 관내 압력의 비정상적인 증가를 자동적으로 완화시켜주는 메커니즘을 가지고 있는 밸브이다. 따라서 정압기지의 안전을 위해서 안전밸브의 유동 특성과 유동 형태를 살펴보는 것은 매우 중요하다. 본 논문은 안전밸브의 분출용량과 필요분출면적에 따른 유동 특성을 수치해석을 통해서 분석하였다. 본 결과를 국내 외 안전밸브 관련 규정인 미국의 API(America Petroleum Institute), 유럽 연합의 EN(European Standard), 프랑스의 NF(Norme Francise)를 이용하여 분석, 비교하였다. 또한 안전밸브의 최대 필요 분출 면적을 이용하여 국내 및 국외 규정을 각각 적용하였을 때의 안전밸브의 필요 설치 수량에 대한 고찰을 해보았다.

  • PDF

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

서울에서 겨울철 기온이 -5℃ 이하인 날 수의 십년간 변동 특성 (Interdecadal Changes in the Number of Days on Which Temperatures are not Higher Than -5℃ in Winter in Seoul)

  • 최재원;차유미;김정윤;박철홍
    • 한국기후변화학회지
    • /
    • 제7권1호
    • /
    • pp.49-57
    • /
    • 2016
  • In the present study, the time series of the number of days on which temperatures were not higher than $-5^{\circ}C$ in winter in Seoul was analyzed. The results showed a decreasing tendency until recently. Statistical change-point analysis was conducted to examine whether climate regime shifts existed in this time series. According to the results, the number of days on which temperatures were not higher than $-5^{\circ}C$ in winter in Seoul drastically decreased since 1988. Therefore, to find out the reason for the recent decrease in the number of days, differences between the means of large-scale environments in winder during 1988~2010 and those during 1974~1987 were analyzed. In all layers of the troposphere, anomalous anticyclones developed in regions around the Korean Peninsula and thus the Korean Peninsula was affected by westerlies or south-westerlies. This was associated with the recent a little further northward development of western North Pacific subtropical high. Therefore, environments good for warm and humid air to flow into the Korean Peninsula were formed. To examine whether relatively warm and humid air actually flowed into the Korean Peninsula recently, temperatures and specific humidity in all layers in the troposphere were analyzed and according to the results the Korean Peninsula showed warm and humid anomalies. In the analyses of sensible heat net flux and maximum temperatures at a height of 2 m that can be felt by humans, the East Asia Continent including the Korean Peninsula showed positive anomalies.

Cinematic PIV 데이터의 3차원 위상평균 기법을 이용한 실린더 후류의 2차 와류 측정 (Measurements of Secondary Vortices in the Cylinder Wake by Three-Dimensional Phase-Averaging Technique Using Cinematic PIV Data)

  • 성재용;유정열
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1540-1548
    • /
    • 2000
  • Near-wake flow field downstream of a circular cylinder in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength of around one diameter has been studied by means of phase-averaging from cinematic PIV data. A cross-correlation algorithm in conjunction with the FFT(Fast Fourier Transform)analysis and an offset correlation technique is used for obtaining the velocity vectors. Which the help of very high sampling rate compared to the shedding frequency, it is possible to obtain phase-averaged flow fields although the shedding is not forced but natural. Phase -locked three-dimensional vortical structures are reconstructed form the phase-averaged data in one x-y(cross-sectional) and several z-x(spanwise-streamwise)planes. In this process of phase-averaging in a z-x plane, a technique to freeze the secondary vortices relative to the centerline is applied. The formation process of the secondary vortices is shown by considering spatial relations between the primary Karman and the secondary vortices and their temporal evolutions.

Multi-Point Aerodynamic Design Optimization of DLR F-6 Wing-Body-Nacelle-Pylon Configuration

  • Saitoh, Takashi;Kim, Hyoungjin;Takenaka, Keizo;Nakahashi, Kazuhiro
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.403-413
    • /
    • 2017
  • Dual-point aerodynamic design optimization is conducted for DLR-F6 wing-body-nacelle-pylon configuration adopting an efficient surface mesh movement method for complex junction geometries. A three-dimensional unstructured Euler solver and its discrete adjoint code are utilized for flow and sensitivity analysis, respectively. Considered design conditions are a low-lift condition and a cruise condition in a transonic regime. Design objective is to minimize drag and reduce shock strength at both flow conditions. Shape deformation is made by variation of the section shapes of inboard wing and pylon, nacelle vertical location and nacelle pitch angle. Hicks-Henne shape functions are employed for deformation of the section shapes of wing and pylon. By the design optimization, drag coefficients were remarkably reduced at both design conditions retaining specified lift coefficient and satisfying other constraints. Two-point design results show mixed features of the one-point design results at low-lift condition and cruise conditions.