Analysis of Flow Regimes by Using Chaos Parameters in Gas-Solid Fluidized Beds

기체-고체 유동층에서 Chaos 파라메타에 의한 흐름영역의 해석

  • Song, Pyung-Seob (Division of R&D on Decontamination and Decommissioning Technology, KAERI) ;
  • Choi, Wang-Kye (Division of R&D on Decontamination and Decommissioning Technology, KAERI) ;
  • Jung, Chong-Hun (Division of R&D on Decontamination and Decommissioning Technology, KAERI) ;
  • Oh, Won-Zin (Division of R&D on Decontamination and Decommissioning Technology, KAERI) ;
  • Kang, Suk-Hwan (School of Chemical Engineering, Chungnam National University) ;
  • Son, Sung-Mo (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University)
  • 송평섭 (한국원자력연구소 제염.해체기술연구개발부) ;
  • 최왕규 (한국원자력연구소 제염.해체기술연구개발부) ;
  • 정종헌 (한국원자력연구소 제염.해체기술연구개발부) ;
  • 오원진 (한국원자력연구소 제염.해체기술연구개발부) ;
  • 강석환 (충남대학교 화학공학부) ;
  • 손성모 (충남대학교 화학공학부) ;
  • 강용 (충남대학교 화학공학부)
  • Received : 2005.11.04
  • Accepted : 2005.12.20
  • Published : 2006.02.10

Abstract

Methods to distinguish flow regimes in gas-solid fluidized bed have been investigated by adopting the concept of chaos theory. Pressure fluctuations have been chosen as a state variable for the analysis of the system. Pressure fluctuations obtained from differential pressure transducer have been investigated using the chaos analysis (Correlation dimension and Kolmogorov entropy) as well as the average and standard deviation. As a result, fluidization regimes in gas-solid fluidized bed can be distinguished by statistics methods as the average and standard deviation. Also, Correlation dimension and Kolmogorov entropy could be used to classify the fluidization regimes.

기체-고체 유동층 시스템에서 유동화 흐름영역을 결정할 수 있는 방법들에 대하여 고찰하였다. 기체-고체 시스템의 흐름영역 해석을 위한 상태변수로 상승관내에서의 압력요동을 측정하여 유동화 흐름영역을 해석하였으며, 차압변환기로부터 얻은 압력요동의 자료를 기존의 방법인 평균 및 표준편차를 사용하여 해석하였을 뿐만 아니라, 상관차원이나 Kolmogorov 엔트로피와 같은 chaos 해석 방법을 이용하여 기체-액체 유동층에서 흐름영역을 고찰하였다. 그 결과, 기체-고체 유동층에서 유동화 영역은 평균과 표준편차와 같은 통계적 방법에 의해 결정할 수 있었을 뿐만 아니라, 상관차원과 Kolmogorov 엔트로피와 같은 Chaos 해석방법으로도 유동화영역을 구별할 수 있는 특성으로 사용할 수 있었다.

Keywords

References

  1. D. Bai, E. Shibuya, N. Nakagawa, and K. Kato, Powder Technol., 87, 105 (1996) https://doi.org/10.1016/0032-5910(95)03072-7
  2. R. C. Zijerveld, F. Johnsson, A. Marzocchella, J. C. Shoutten, and C. M. van den Bleek, Powder Technol., 95, 185 (1998) https://doi.org/10.1016/S0032-5910(97)03336-6
  3. F. Johnsson, R. C. Zijerveld, J. C. Schouten, C. M. van den Bleek, and B. Leckner, International Journal of Multiphase flow, 26, 663 (2000) https://doi.org/10.1016/S0301-9322(99)00028-2
  4. A. Svensson, F. Johnsson, and B. Leckner, Powder Technol., 86, 299 (1996) https://doi.org/10.1016/0032-5910(95)03055-7
  5. J. Wiman and J. E. Almstedt, Chern. Eng. Sci., 53, 2167 (1998) https://doi.org/10.1016/S0009-2509(98)00056-6
  6. H. T. Bi, N. Ellis, I. A. Abba and J. R. Grace, Chem. Eng. Sci., 55, 4789 (2000) https://doi.org/10.1016/S0009-2509(00)00107-X
  7. J. C. Schouten, M. L. M. van der Stappen, and C. M. van den Bleek, Chem. Eng. Sci., 51, 1991 (1996) https://doi.org/10.1016/0009-2509(96)00056-5
  8. Y. T. Makkawi and P. C. Wright, Chem. Eng. Sci., 57, 2411 (2002) https://doi.org/10.1016/S0009-2509(02)00138-0
  9. J. Van der Schaaf, F. Johnsson, J. C. Schouten, and C. M. van den Bleek, Chem. Eng. Sci., 54, 5541 (1999) https://doi.org/10.1016/S0009-2509(99)00282-1
  10. A. I. Karamavruc, N. N. Clark, and J. S. Halow, Powder Technol., 84, 247 (1995) https://doi.org/10.1016/0032-5910(95)02986-C
  11. P. Grassberger and I. Procaccia, Physical review A, 28, 2591 (1983) https://doi.org/10.1103/PhysRevA.28.2591
  12. S. P. Thomas and O. C. Leon, Practical numerical algorithms for chaotic systems, Springer-Verlag, New York, Inc. (1989)
  13. J. Yerushalmi and N. T. Cankurt, Powder Technol., 24, 187 (1979) https://doi.org/10.1016/0032-5910(79)87036-9
  14. A., Chehbouni, J. Chaouki, C. Guy, D. Klvana, In H. T. Bi, N. Ellis, A. Abba, and J. R. Grace, Chem. Eng. Sci., 55, 4789 (2000) https://doi.org/10.1016/S0009-2509(00)00107-X
  15. M. Horio, in Circulating fluidized bed technology Vol. III, P. Basu, M. Horio, and M. Hasatani Ed., Oxford, Pergamon (1991)
  16. G. S. Lee and S. D. Kim, J. Chem. Eng. Japan, 21, 515 (1988) https://doi.org/10.1252/jcej.21.515
  17. M. Nakajima, M. Harada, R. Asai, Y. Yamazaki, and G. Jimbo, Circulating fluidized bed technology, Vol. II, P. Basu, and J. F. Large Ed., Pergamon Press (1991)
  18. L. D. Luca, R. Di Felice, P. U. Foscolo, and P. P. Boattini, Powder Technol., 69, 171 (1992) https://doi.org/10.1016/0032-5910(92)85071-3
  19. H. J. Ryu, Ph.D. Thesis, Konkuk University, Seoul, Korea (2000)
  20. C. Y. Wen and Y. H. Yu, Powder Technol., 96, 129 (1966)
  21. J. R. Grace, Handbook of multiphase systems, G. Hetsroni Ed., Washington, DC, Hemisphere (1982)
  22. S. H. Kang, Ph.D. Thesis, Chungnam National University, Daejeon, Korea (2003)