• Title/Summary/Keyword: Flow rate coolant

Search Result 241, Processing Time 0.028 seconds

Effect of Guide Fin Structures and Boundary Parameters on Thermal Performances of Heat Exchanger for Waste Heat Recovery Thermoelectric Generator (가이드 핀 구조와 경계 파라미터가 폐열 회수용 열전발전 열교환기의 열적 성능에 미치는 영향)

  • Garud, Kunal Sandip;Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.30-35
    • /
    • 2021
  • The present study examined the effects of various guide fin structures and boundary parameters on the thermal performance of heat exchangers used in heat recovery thermoelectric generators. The heat transfer rate and pressure drop of the heat exchangers without fins, with circular fins, with triangular fins, and with combined circular and triangular fins were simulated numerically using ANSYS 19.1 commercial code to confirm the effect of the guide fin structures. The heat transfer rate of the heat exchanger with combined fins was 27.0%, 5.2%, and 1.5% higher than those without fins, with circular fins, and with triangular fins, respectively. The pressure drop characteristic of the heat exchanger with the combined fins was 28.3% higher than that without fins but 9.2% and 10.5% lower than those with circular fins and with triangular fins, respectively. The heat exchanger with combined fins as the optimal model showed the highest heat transfer rate of 5664.9 W and pressure drop of 1454.02 Pa for highest hot gas temperature, maximum flow rates of hot gas and coolant, and lowest coolant temperature.

An Assessment of the Best Estimate Thermal-Hydraulic Analysis Code CATHARE on CREARE Downcomer Experiment (CREARE Downcomer실험에 대한 최적열수력 분석용 전산코드 CATHARE의 검증)

  • Chang, Won-Pyo;Lee, Jae-Hoon;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.274-284
    • /
    • 1992
  • A 1/15-scale CREARE experiment, which simulates the thermal-hydraulic behavior in the reactor pressure vessel of a PWR during a hypothetical Loss Of Coolant Accident, has been analyzed using CATHARE code for the associated model assessment to represent the phenomenon. The key parameters examined in the CREARE experiment were known as ECC water injection rate. ECC water subcooling, system pressure, and steam flow rate coming out from the core bottom. The present CATHARE simulation, however, has been mainly focused on qualitative analysis of a countercurrent flow in the downcomer. The discrepancy of the simulation results with the experimental data is considered arising primarily from an inadequate numerical representation as well as an interfacial friction model. Accordingly it is suggested from the sensitivity studies that either multidimensional approach or further examination of momentum equations at a junction near a volume element in CATHARE be necessary in order to represent the phenomenon more realistically.

  • PDF

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

Reliability Assesment Test on the Regular Maintenance of HTS Cable System (초전도케이블시스템 유지.보수에 따른 신뢰성 평가 시험)

  • Sohn, Song-Ho;Yang, Hyung-Suk;Lim, Ji-Hyun;Choi, Ha-Ok;Kim, Dong-Lak;Ryoo, Hee-Suk;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.361-361
    • /
    • 2009
  • KEPCO High Temperature Superconducting (HTS) cable system rated with $3\Phi$, 22.9kV, 1250A was laid in 2006, and the long term test is in progress. The HTS cable system with the cooling system has been operated below cryogenic temperature. That environment exposes the system to the thermo-mechanical stress due to the significant temperature difference, and the cooling system has moving parts for the forced circulation of the coolant. Therefore the HTS cable system experiences thermal fatigue and moving part such as liquid nitrogen pump need a regular replacement every 5000 hours Building the assessment criterion, the maintenance procedure was established and regular preventive maintenance was done; improvement of the termination structure and the replacement of the bearing of liquid nitrogen pump. Following the proper process, the reliability assessment test including He leakage detection and the stability of flow rate was performed. This paper describes the process and result of the first regular maintenance of KEPCO HTS cable system

  • PDF

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

Thermal Characteristic Analysis of IPMSM for Traction Considering a Driving Pattern of Urban Railway Vehicles (도시철도차량의 운행패턴을 고려한 견인용 IPMSM의 열 특성 분석)

  • Park, Chan-Bae;Kim, Jae-Hee;Lee, Su-Gil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, temperature change properties on the 210kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) are performed with the cooling performance of a water cooling device through the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles. First, the thermal analysis modeling of 210kW-class IPMSM, which is an alternative to the conventional induction motor, and its water cooling device is conducted. Next, the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles is performed using 2-Dimensional FEM tool. Finally, the calculated characteristic results are analyzed. Consequently, it is confirmed that the internal temperature of the 210kW-class IPMSM may be lowered to about 42~52% by maintaining the coolant flow rate of the water cooling device (Cross sectional shape of the pipe has 220mm width and 10mm height) for 0.2kg/s level.

Identification of the Most Conservative Condition for the Safety Analysis of a Nuclear Power Plant by Use of Random Sampling (무작위 추출 방법을 이용한 원자력발전소 보수적 안전해석 조건 결정)

  • Jeong, Hae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.131-137
    • /
    • 2015
  • For the evaluation of safety margin of a nuclear power plant using a conservative methodology, the influence of applied assumptions such as initial conditions and boundary conditions needs to be assessed deliberately. Usually, a combination of the most conservative initial conditions is determined, and the safety margin for the transient is evaluated through the analysis for this conservative conditions. In existing conservative methodologies, a most-conservative condition is searched through the analyses for the maximum, minimum, and nominal values of the major parameters. In the present study, we investigates a new approach which can be applied to choose a most-conservative initial condition effectively when a best-estimate computer code and a conservative evaluation methodology are utilized for the evaluation of safety margin of transients. By constituting the band of various initial conditions using the random sampling of input parameters, the sensitivity study for various parameters are performed systematically. A method of sampling the value of control or operation parameters for a certain range is adopted by use of MOSAIQUE program, which enables to minimize the efforts for achieving the steady-state for various different conditions. A representative control parameter is identified, which governs the reactor coolant flow rate, pressurizer pressure, pressurizer level, and steam generator level, respectively. It is shown that an appropriate distribution of input parameter is obtained by adjusting the range and distribution of the control parameter.