• Title/Summary/Keyword: Flow rate coolant

Search Result 241, Processing Time 0.027 seconds

The Effect on the Film Cooling Performance of Thrust Chamber with Combustion Performance Parameters (연소성능 파라미터가 추력실의 막냉각 성능에 미치는 영향)

  • Kim Sun-Jin;Jeong Chung-Yon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-54
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the lab-scale liquid rocket engine using liquid oxygen(LOx) and Jet A-1(Jet engine fuel) as propellants. Film coolants(Jet A-1 and water) was injected through the film cooling injector. The outside wall temperature of the combustor and film cooled length were determined for chamber pressure, mixture ratio, and the different geometries(injection angle) with the percent film coolant flow rate. The loss of characteristic velocity was determined for the case of film cooling with water and Jet A-1. As chamber pressure increased, the outside wall temperature increased in the nozzle but unchanged over the 9 percent film coolant flow rate for the combustion chamber used in this study. Characteristic velocity wasn't affected with the mixture ratio over the 9 percent film coolant flow rate.

An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature (냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구)

  • Cho, Won-Joon;Kim, Hyung-Ik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.

A Numerical Simulation of Flows in an Engine Cooling Passage (엔진 냉각유로 내의 유동에 관한 수치해석)

  • 허남건;윤성영;조원국;김광호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.32-40
    • /
    • 1993
  • Flow fields in model engine cooling passages are studied numerically by using TURBO-3D program, a finite volume based 3-D turbulent flow program adopting a general body fitted coordinate system. The effects of exit position on mass flow rate at each gasket hole are examined for a model cooling passage in order to understand the flow distribution inside the water jacket. The results of the present study can be applied to the design of high performance, high reliability engine.

  • PDF

Mitigation of Flooding under Externally Imposed Oscillatory Gas Flow

  • Lee, Jae-Young;Chang, Jen-Shih
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.475-479
    • /
    • 1995
  • During the hypothetical loss of coolant accident in the nuclear power plant the emergency core cooling water could not penetrate to the reactor core when the steam flow rate from the reactor core exceeds CCFL (Countercurrent flow limitation). The CCFL generated by earlier investigators are developed under the steady gas flow. However the flow instability in the reactor loop could generate oscillatory steam flow, hence their applicability under oscillating flow should be investigated. In this work, an experimental investigation of countercurrent flow in the vertical flow channel has been conducted under oscillatory gas flow. Pulsation of gas under oscillatory flow disturbs the flow pattern significantly and prevents flooding (CCFL) when its minimum value is less than the threshold gas flow rate value.

  • PDF

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

1-D Two-phase Flow Investigation for External Reactor Vessel Cooling (원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석)

  • Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

A STUDY OF THE MERCURY VAPOR MEASUREMENT DURING AMALGAM REMOVAL (충전(充塡)된 아말감 제거시(除去時) 발생(發生)되는 수은증기량(水銀蒸氣量) 측정(測定)에 관(關)한 연구(硏究))

  • Na, Keung-Kyun;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.85-92
    • /
    • 1984
  • The aim of this study was to examine the influence of the speed of grinding and coolants on mercury vaporization during amalgam removal. Forty amalgam filled stone dies were stored at $37^{\circ}C$ and 100% relative humidity for 7 days prior to the beginning of the mercury vapor experiment and were divided into 4 different groups; In Group I; Used by high speed without coolant & evacuator during amalgam removal. In Group II; Used by high speed with coolant & evacuator during amalgam removal. In Group III; Used by low speed without coolant & evacuator during amalgam removal. In Group IV; Used by low speed with coolant & evacuator during amalgam removal. The amalgam specimens were removed in a 30-second time period and mercury vapor was collected with membrane filter at 27mm from the site of removal and 45 degree above there. Samples in Group II, IV were removed with coolant spray at a flow rate of 30 ml/min with high-velocity evacuator. Mercury vapor collected membrane filter was analysed by Atomic Absorption Spectrophotometer using cold vapor method. The results were as follows; 1. The mercury vapor levels were obtained all of the Groups. 2. The mercury vapor levels of the Group II, IV (with coolant & evacuator) were less than that of the Group I, III (without coolant & evacuator). 3. The highest mercury vapor level recorded during amalgam removal procedure was Group I (used by high speed without coolant & evacuator) and its record was $0.78{\pm}0.09\;mg/m^3$, which exceed the T.L.V. by 15 times. 4. The mercury vapor level of the Group IV (used by low speed with coolant & evacuator) was more than that of the Group II (used by high speed with coolant & evacuator), but its difference was not significant, statistically. (p > 0.05)

  • PDF

A Study on Electrodeionization for Purification of Primary Coolant of a Nuclear Power Plant (원자력 발전소의 일차 냉각수 정화를 위한 전기탈이온법의 기초연구)

  • Yeon, Kyeong-Ho;Moon, Seung-Hyeon;Jeong, Cheorl-Young;Seo, One-Sun;Chong, Sung-Tai
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.73-86
    • /
    • 1999
  • The ion-exchange method for the purification of primary coolant has been used broadly in PWR(pressurized water reactor)-type nuclear power plants due to its high decontamination efficiency, simple system, and easy operation. However, its non-selective removal of metal and non-radionuclides shortens its life, resulting in the generation of a large amount of waste ion-exchange resin. In this study, the feasibility of electrodeionization (EDI) was investigated for the purification of primary cooling water using synthetic solutions under various experimental conditions as an alternative method for the ion exchange. The results shows that as the feed flow-rate increased, the removal efficiency increased and the power consumption decreased. The removal rate was observed as a 1000 decontamination factor(DF) at a nearly constant level. For the synthetic solution of 3 ppm TDS (Total Dissolved Solid), the power consumption was 40.3 mWh/L at 2.0 L/min of feed flow rate. The higher removal rate of metal species and lower power consumption were obtained with greater resin volume per diluting compartment. However, the flow rate of the EDI process decreased with the elapsed time because of the hydrodynamic resistivity of resin itself and resin fouling by suspended solids. Thus, the ion-exchange resin was replaced by an ion-conducting spacer in order to overcome the drawback. The system equipped with the ion-conducting spacer resolved the problem of the decreasing flow rate but showed a lower efficiency in terms of the power consumption, the removal rate of metal species and current efficiency. In the repeated batch operation, it was found that the removal efficiency of metal species was stably maintained at DF 1000.

  • PDF

A Study on Performance Characteristics of Heat Pump System on Cooling Mode for Light-duty Commercial Electric Vehicles (EV 상용차용 히트펌프 시스템 냉방 운전 특성에 관한 연구)

  • Jeon, Hanbyeol;Kim, Jung-Il;Won, Hun-Joo;Lee, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.69-75
    • /
    • 2019
  • The cooling performance of heat pump system for light-duty commercial electric vehicle was evaluated experimentally. The cooling performance characteristics of the heat pump for light-duty commercial electric vehicles were evaluated by varying the temperature, flow rate of chiller coolant, and electric compressor speed, under the exterior air temperature of 35 ℃ and interior air temperature of 25 ℃. Increasing the compressor speeds decreased the cooling system efficiency by 16.4 % on average with the cooling capacity increasing by 8.0 % on average and the compressor work increasing by 27% on average. To use waste heat from the coolant to chill power electronic components, such as the motor and inverter, a chiller was installed to transfer heat between the coolant and refrigerant. Increasing the temperature of the chiller coolant from 35 ℃ to 55 ℃ decreased the efficiency by 18.2 % on average due to higher condensing heat source. Increasing the coolant flow rate from 10 liter/min to 20 liter/min did not affect the cooling capacity of the system due to a similar total condensing heat transfer rate at the chiller and the exterior heat exchanger. In future works, heating performance will be investigated by varying the operating conditions to use the chiller's waste heat with an improvement of heating capacity.