• 제목/요약/키워드: Flow rate Control

검색결과 2,002건 처리시간 0.03초

랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법 (A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip)

  • 한수동;김국배;이상준
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

Transcranial Doppler를 이용(利用)한 태음인 중풍환자의 혈류속도(血流速度)와 혈관(血管) 반응성(反應性)에 대한 임상적(臨床的) 고찰(考察) (Clinical study of blood flow and vascular reaction in Taeumin CVA patients using Transcranial Doppler)

  • 임종필;배나영;한경수;안택원
    • 혜화의학회지
    • /
    • 제15권2호
    • /
    • pp.263-272
    • /
    • 2006
  • Purpose Brain vessles have autoregulation function, so even when perfusion pressure drops, cerebral blood flow remain stable by vasodilation. Latest research on this reserve of cerebral vessels is being done using TCD, which measures the reserve of the vessels. We did a research comparing cerebral vessel and peripheral vessel reserve between Taeumin, who are more likely to suffer CVA, and the normal. We observed blood flow of Internal carotid artery siphon and radial indicis artery of the two group with TCD. Method We picked 20 people out of patients diagnosed as cerebral infarction at Cheon-An Oriental hospital of Daejeon University. They were diagnosed as Taeumin with QSCCII questionnaire and constitutional differentiation. Using TCD, we measured highest blood flow rate, mean blood flow and asymmetric counting blood flow of Internal carotid artery siphon and radial indicis artery at rest. And then we measured again after stimulating cerebral vessels, by triggering hypercapnia by self apnea and peripheral vessels by palm heating. Result At rest, mean blood flow rate of Internal carotid artery siphon showed significant decrease compared to control group. Blood flow rate of Internal carotid artery siphon after hypercapnia showed significant decline in highest blood flow rate and mean blood flow compared to control group. Cerebral vessel reaction after the hypercapnia induction showed great change in experiment group than the control group. Peripheral vessel reaction after palm heating showed significant decline in experiment group compared to control group. Conclusion In conclusion, measuring the alteration of blood flow used in diagnosing cerebral infarction, is more sensitive when vessel stimulation is done. Non-invasive TCD is effective especially in case of Taeumin who are more likely to suffer vascular disorder than others.

  • PDF

베인 펌프용 유량 제어부의 전산설계에 관한 연구 (A Study on the computer aided design for flow control valve of vane pump)

  • 이윤태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.555-560
    • /
    • 2000
  • The modeling and the numerical analysis are done so as to develop the Computer Aided Design program for the design of flow control valve attached to the vane pump. The factors affecting the flow rate characteristics, are analyzed by the experiments and the numerical methods. It is shown that the main factor affecting to the first control flow is the diameter of small rod of the spool, the main factor affecting to the second control flow is the diameter of big rod of the spool, the main factors affecting to the cut off are the main spring constant, the initial displacement of main spring and small diameter of the spool, and the dropping slope characteristics of flow rate are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

바닥 복사 난방 시스템의 제어전략에 따른 에너지 사용량 분석 (Energy Saving Potentials of Radiant Floor Heating Systems Based on Control Strategies)

  • 이준우;박철수
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.109-114
    • /
    • 2009
  • The dominant heating system used in Korean residential apartment buildings is a hydronic radiant floor heating system, known as the Ondol system. The most common control strategy applied to this traditional hydronic radiant system is a simple on-off control that intermittently supplies "hot water of a fixed temperature" at a "constant flow rate" to each room. However, the current problems with the aforementioned control are as follows: (1) since the simple on-off control is usually based on a one point measured temperature (a signal from a thermostat installed in a living room) in each dwelling unit, heating energy use for unoccupied rooms as well as a difference in temperatures between spaces (master bedroom, living room, bedroom1, bedroom2) can occur occasionally. (2) the most widely used residential water splitter has static valves, and is thus not able to change the flow rate to each room depending on the space heating load. In other words, the ratio of flow rates to rooms is fixed after construction, resulting in over- or under-heating and an improper use of energy. The aim of this paper is therefore to investigate the differences in the system's performance between control strategies in terms of the flow rate control and sensor location. It is shown that energy savings of control strategies are strongly influenced by occupant schedule.

  • PDF

유량평형시험을 통한 환경제어계통 설계 검증 (Design Verification of Environmental Control System by Flow Balance Test)

  • 박동명;정용인;문우용;박성순
    • 한국항공우주학회지
    • /
    • 제40권7호
    • /
    • pp.608-615
    • /
    • 2012
  • 본 연구는 무인항공기의 항전베이와 환경제어계통이 가지고 있는 시스템 특성을 분석하여 항전장비에 공급되는 적정 유량을 예측하였다. 예측된 결과를 바탕으로, 각 토출구에서 토출되는 유량과 유량 분포를 분석하여 환경제어계통에 대한 성능을 분석함과 동시에 항전베이에 대한 열해석을 수행하여 유량 분포의 적절성을 입증하였다. 분석된 결과에 대한 타당성을 검증하기 위해 실제 환경제어계통을 이용하여 유량평형 시험장비를 구축하고, 유량평형시험을 수행하였으며, 항전장비의 시스템 요구조건에 부합되는 유량을 최종 도출하였다. 또한, 중고도 운용환경에서 시스템 요구조건의 충족여부를 검증하고 환경제어계통에 대한 열교환 성능을 입증하였다.

터널 굴착기 유압시스템용 유량 제어 블록 개발 (Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine)

  • 이재동;임상진
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

2단 유량제어 Fluidic Device의 특성에 관한 연구 (A Study on the Characteristics of Two-Step-Flow-Control Fluidic Device)

  • 조봉현;배윤영;박종균;유성연
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.53-61
    • /
    • 2001
  • Vortex type Fluidic Device(FD) which is installed at the bottom of Safety Injection Tank(SIT) controls the discharge flow rate from the tank. In case of loss of coolant accident the injection water flows into primary system in two steps; initial high flow rate for certain period of time and subsequent low flow rate. By two-step control of the discharge flow rate, FD can ensure the effective use of water in the tank. A small-scale FD has been tested to obtain a required flow characteristics maintaining full pressure and height of prototype, which are the major contributing parameters. Through the testing of many different arrangements of internal geometry of FD, most appropriate one was selected and its performance data was obtained. As characteristics of FD, time dependent Euler number, flow rate and pressure are presented and discussed. Also a method to predict the full size FD is presented.

  • PDF

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기 (A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가 (Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve)

  • 허전;이석종;성재용;이명호
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

Flow Aggregation of Rate Controlled Round-Robin Scheduler

  • Kim, Ki-Cheon
    • ETRI Journal
    • /
    • 제26권4호
    • /
    • pp.351-359
    • /
    • 2004
  • Flow aggregation is a scalable method to provide quality of service (QoS) guarantees to a large number of flows economically. A round-robin scheduler is an efficient scheduling algorithm. We investigate flow aggregation using a round-robin scheduler and propose the use of periodic timer interrupts for rate control of the round-robin scheduler. The proposed flow aggregator is a single-stage scheduler compared to Cobb's two-stage flow aggregator consisting of an aggregator and non-aggregating scheduler. It is possible to implement flow aggregation in the existing routers with only a software upgrade. We also present a simulation study showing the delay behaviors of the proposed algorithm.

  • PDF