• 제목/요약/키워드: Flow rate Control

검색결과 2,011건 처리시간 0.03초

설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구 (CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS)

  • 이종욱;최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

멀티형 공조시스템의 증발기 과열도에 관한 실험적 연구 및 냉매유량 제어 (Experimental Study of the Superheat and Control of the Refrigerant Flow-Rate in the Evaporator of a Multi-type Air-Conditioning System)

  • 김태섭;홍금식;손현철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.221-221
    • /
    • 2000
  • The heat exchange part in a modern multi-type air-conditioning system employs multiple-pass heat exchangers. The heat-transfer performance of an each pass in such an exchanger depends strongly on the length of the two-phase region and the mass flow of the refrigerant. The total length and diameters of the pipes, the exit conditions, and the arrangement of each pass as well as the geometrical shape of the distributor at the branching sections are considered to be major factors affecting the heat-transfer performance. The refrigerant commonly used in these systems is HCFC-22. The two objectives of this paper are to investigate the characteristics of the refrigerant flow rate and the superheat in the evaporator of a multi-type air-conditioning system for a single or simultaneous operating conditions and to control the superheat and the refrigerant flow rate of the evaporator.

  • PDF

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

Thrust Vector Control and Discharge Stabilization in a Hall Thruster by Azimuthal Division of Propellant Flow Rate

  • Fukushima, Yasuhiro;Yokota, Shigeru;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.574-578
    • /
    • 2008
  • In order to achieve thrust vector control and discharge stabilization in Hall thrusters, the azimuthal nonuniformity of propellant flow rate in an acceleration channel was created. A plenum chamber was divided into two rooms by two walls and propellant flow rate supplied to each section was independently controlled. In a magnetic layer type Hall thruster, steering angle of up to ${\pm}2.3$ degree was achieved. In an anode layer type Hall thruster, discharge current oscillation amplitude was decreased with the normalized differential mass flow rate.

  • PDF

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

트랙터의 전자유압식(電子油壓式) 히치제어 시스템에 관한 연구(硏究)(I) -위치제어(位置制御)- (Electronic-Hydraulic Hitch Control System for Agricultural Tractor -Position Control-)

  • 유수남;류관희;박준걸
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.168-180
    • /
    • 1989
  • This study was attempted to develop the electronic-hydraulic hitch control system for position control of tractor plow and investigate the control performance of the system through experiments. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in position control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. The following conclusions were derived from the study; 1. For the position control system operated on on-off control mode, positions of implement were controlled within ${\pm}0.73^{\circ}{\sim}{\pm}1.46^{\circ}$ in rockshaft angle to the reference position when the hydraulic flow rates were 5~15 l/min. For the position control system operated on PWM control mode, positions of implement were controlled within ${\pm}0.73^{\circ}$ to the reference position regardless of hydraulic flow rates. It means that the implement could be positioned more accurately to the reference position on PWM control mode than on on-off control mode. 2. As results of the frequency responses of the position control systems, no clear difference in control performance between on-off control and PWM control modes was found. As the hydraulic flow rates increased, the corner frequencies of amplitude attenuation and phase-angle change increased. It means that the control performance of the system could be improved as the hydraulic flow rate increases.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브 (High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring)

  • 김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.