• Title/Summary/Keyword: Flow quality

Search Result 3,363, Processing Time 0.032 seconds

THE CLASSIFICATION SYSTEM OF RIVER HEALTH FOR THE ENVIRONMENTAL WATER QUALITY MANAGEMENT

  • Carolyn G. Palmer;Jang, Suk-Hwan
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • South Africa has developed a policy and law that calls and provides for the equitable and sustainable use of water resources. Sustainable resource use is dependent on effective resource protection. Rivers are the most important freshwater resources in the country, and there is a focus on developing and applying methods to quantify what rivers need in terms of flow and water quality. These quantified and descriptive objectives are then related to specified levels of ecological health in a classification system. This paper provides an overview of an integrated and systematic methodology, where, fer each river, and each river reach, the natural condition and the present ecological condition are described, and a level/class of ecosystem health is selected. The class will define long term management goals. This procedure requires each ecosystem component to be quantified, starting with the abiotic template. A modified flow regime is modelled for each ecosystem health class, and the resultant fluvial geomorphology and hydraulic habitats are described. Then the water chemistry is described, and the water quality changes that are likely to occur as a consequence of altered flows are predicted. Finally, the responses to the stress imposed on the biota (fish, invertebrates and vegetation) by modified flow and water quality are predicted. All of the predicted responses are translated into descriptive and/or quantitative management objectives. The paper concludes with the recognition of active method development, and the enormous challenge of applying the methods, implementing the law, and achieving river protection and sustainable resource-use.

  • PDF

Current Status of Refractory Dissolved Organic Carbon in the Nakdong River Basin (낙동강유역 난분해성 용존 유기탄소 배출 현황 분석)

  • Lee, Jeonghoon;Kim, Jungsun;Lee, Jae Kwan;Kang, Limseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.538-550
    • /
    • 2012
  • This study suggests a general methodology which is designed for assessing RDOC behavior at the catchment scale by coupling properly a series of steam flow and water quality simulation models and actual monitoring data set. The modified TANK model in which a river routing function is incorporated to the conventional one is applied to simulate the long-term daily stream flow data, and the simulated stream flow data is combined with the 7-parameter log-linear model coupled to the minimum variance unbiased estimator to simulate the long-term daily water quality (BOD, COD and TOC) loads. Finally, the regression analysis between the usually monitored water quality data (BOD, COD and TOC) and RDOC is combined with the simulated water quality data to manifest the spatio-temporal variability of RDOC flux behavior at the Korean TMDL catchment scale.

Analyzing for Refrigerant Induced Noise for Split Type Air Conditioner Indoor Unit (분리형 에어컨의 실내기 냉매 소음 저감 분석)

  • Aoyama Shigeo;Mo, Jin-Yong;Lee, Jae-Kwon;Song, Yong-Jae;Han, Hyung-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.240-246
    • /
    • 2006
  • In the air-conditioner, refrigerant induced noise and vibration can be increased when the airflow rate is reduced in order to decrease the noise at the low mode. Through the test and analysis of this kind of noise, it can be verified that the main reasons of refrigerant induced noise are the velocity and flow Induced force of the refrigerant at the inlet of the evaporator, So, in order to reduce this velocity, quality at the evaporator inlet should be minimized. And, in order to reduce flow induced force of the refrigerant, sudden change of fluid flow must not be occurred. So, in this paper, we will review the characteristics of refrigerant cycle and find how the quality and flow induced force can be minimized.

Pollutant Load Characterization with Flow Conditions in Heukcheon Stream (흑천의 유량조건별 오염부하량 특성)

  • Choi, Kyungwan;Lee, Sangwon;Noh, Changwan;Lee, Jaekwan;Lee, Youngjoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.551-557
    • /
    • 2015
  • The TMDL (Total Maximum Daily Load) has been used to determine the water quality target. LDC (Load Duration Curve) based on hydrology has been used to support water quality assessments and development of TMDL. Also FDC (Flow Duration Curve) analysis can be used as a general indicator of hydrologic condition. The LDC is developed by multiplying FDC with the numeric water quality target of the factor for the pollutant of concern. Therefore, this study was to create LDC using the stream flow data and numeric water quality target of BOD and T-P in order to evaluate the pollutant load characterization by flow conditions in Heukcheon stream. When it is to be a high-flows condition, BOD and T-P are necessary to manage. BOD and T-P did not satisfy the numeric water quality target for both seasons (spring and summer). In order to meet the numeric water quality target in Heukcheon stream, management of non point source pollutant is much more important than that of point source pollutant control.

Flow regimes and water quality impact of turbidity current into a stratified reservoir (성층 저수지로 유입하는 탁류의 유동특성과 영향에 관한 연구)

  • Chung, Se-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • Turbidity currents, often develop after heavy storm events, deliver various non-point pollutants and tend to lead eutrophication, depressed dissolved oxygen, and sedimentation in reservoirs. Field observations were performed to investigate the flow regimes of turbidity currents and their impact on reservoir water quality in Daecheong Reservoir. A 2D laterally-averaged hydrodynamic and water quality model was applied to simulate the temporal and spatial distributions of turbidity in the reservoir, and evaluated by comparing with the field data.

  • PDF

Study on the flow characteristics of the polymer reactors (고분자 반응기의 내부 유동 특성에 관한 연구)

  • Choi D. S.;Im Y. H.;Han S. P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.134-139
    • /
    • 2002
  • This study is focused on investigating the characteristics of internal flow of the polymer reactor and its effect on the polymer quality. Four types of polymer reactor which have different kind of impeller, baffle and operation condition were calculated by CFD. Fluent 6 have been used to simulate mixing phenomena of reactor. According to the comparison of computational results and SEM photographs of polymer particle, distribution of turbulent dissipation rate greatly influences on the quality of polymer. So, distribution of turbulent dissipation rate to be important criterion to predict polymer quality.

  • PDF

Stochastic River Water Quality Management by Dynamic Programming (동적계획법을 이용한 추계학적 하천수질관리)

  • Cho, Jae-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 1997
  • A river water quality management model was made by Dynamic programming. This model optimizes the wastewater treatment cost of the application area, and computed water quality with it must meet the water quality standard. And this model takes into consideration tributary input, wastewater treatment plant effluent, withdrawls for several purposes. Modified Streeter-Phelps equation was used to calculate BOD and DO. Optimization problem was solved with particular exceedance probability flow, and the water quality of each point was calculated with the decided treatment efficiencies. At that time, the probability satisfying the water quality standard of constraints to the exceedance probability of the flow. The developed model was applied to the lower part of the Han-River. The reliability to meet the water quality standard is 70 % when 4 wastewater treatment plants of Seoul City are operated by activated sludge system at autumn of the year 2001. Treatment cost of this case is 121.288 billion won per year.

  • PDF

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Development and Application of Coliform Load Duration Curve for the Geumho River (금호강 유역의 대장균 부하지속곡선 개발 및 적용)

  • Jung, Kang-Young;Im, Tae-Hyo;Kim, Gyeong-Hoon;Lee, In-Jung;Yoon, Jong-Su;Heo, Seong-Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

The Effects of Flow and Land Use Types on Seasonal Variations of Water Quality in Streams (하천 수질의 계절적 변화에 미치는 유량과 토지이용의 영향)

  • Han, Mideok;Park, Shinjuong;Choi, Seungseok;Kim, Jongchan;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.539-546
    • /
    • 2009
  • We examined the effects of land cover types on water quality based on data surveyed during April 2007-February 2008 from 178 sites of 111 streams in Paldang watershed. BOD, COD, DO, SS, T-N, and T-P concentrations of spring and summer were strongly and significantly associated with the first principal component of the proportions of eight land cover types, and differences between all parameter's concentration except SS and T-N of spring and summer were insignificantly related with them. SS and T-N concentration of summer were significantly correlated with increase and decrease of stream flow. T-P concentration of spring was the most significantly related with the second principal component which was positively correlated with the proportions of residential and forest land covers and was negatively correlated with the proportions of paddy and grass land covers. It is necessary to manage land use of the upper watershed and stream flow for improvement in water quality because seasonal variations of each water quality parameter are dependent upon land cover and flow variations.