• Title/Summary/Keyword: Flow pressure

Search Result 10,198, Processing Time 0.037 seconds

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

The Design of Wireless Underwater Telephone -Analysis of Underwater Background Noise for Wireless Underwater Telephone Design - (수중 무선 전화기의 설계 - 수중무선전화기 설계를 위한 수중소음분석을 중심으로-)

  • 박문갑;윤갑동;김석제;윤종락
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.302-307
    • /
    • 2001
  • The underwater background noise measured in Geoje and Tongyoung diving fishing ground from May to December, 2000 and analyzed to get optimum carrier frequency and transmitter power level for underwater wireless telephone design. The results obtained are summarized as follows: 1. At the Geoje and Tongyoung diving fishing ground, the lowest ambient noise band was 25~30kHz with 57dB and 52dB re 1$\mu$Pa, respectively. 2. At the Geoje and Tongyoung diving fishing ground, the lowest noise band during fishing activity was 67dB and 62dB re 1$\mu$Pa, respectively. 3. At the Geoje diving fishing ground, the noise of water jetter which is a digging machine for subbottom shells was 102dB re 1$\mu$Pa. 4. Considering the design parameters of underwater wireless telephone, it is found that the optimum carrier frequency band is around 30kHz and the transmitter source level should be at least 131dB re 1$\mu$Pa for 500m range telephone.

  • PDF

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

Comparison of Cardioprotection between Histidine-Tryptophan-Ketoglutarate Cardioplegia and DelNido Cardioplegia in Isolated Rat Hearts (흰쥐의 적출심장에서 HTK 심정지액과 DelNido 심정지액의 심근보호효과비교)

  • 공준혁;김대현;장봉현
    • Journal of Chest Surgery
    • /
    • v.36 no.11
    • /
    • pp.799-811
    • /
    • 2003
  • Background: The aim of this study is to define the cardioprotective effects (hemodynamic, cytochemical and ultrastructural of the newly developed Histidine-Tryptophan-Ketoglutarate (HTK) cardioplegia compared to DelNido cardioplegia. Material and Method: Seventy-nine isolated rat hearts were divided into three groups on the basis of techniques of cardioplegia infusion. Twenty-eight hearts (Group 1) were flushed with cold DelNido cardioplegia with every 40 minutes for 2 hours. Twenty-seven hearts (Group 2) were flushed with cold HTK cardioplegia for once during the 2 hours. Twenty-four hearts (Group 3) were flushed with cold HTK cardioplegia with every 40 minutes for 2 hours. Heart rate, left ventricular developed pressure (LVDP), changes of + dp/dt max, coronary flow, and rate-pressure product value were measured at pre-ischemic, post-reperfusion 15 minutes, 30 minutes, and 45 minutes for hemodynamic study. Aspartate aminotransferase (AST), lactate dehydrogenase (LD), creatine kinase (CK), CK-MB, troponin-I, myoglobin, and lactate were measured at pre-ischemic and post-reperfusion 45 minutes for cytochemical parameters. Mitochondrial scores were counted in 3 cases from each group for ultrastructural assessment. Result: In hemodynamic study, there were no significant differences among group 1, group 2, and group 3. However, the decrease values of heart rate in group 2 and 3 exhibited significantly lower values than in group 1. In cytochemical study, there were no significant differences among group 1, group 2, and group 3. However, the increase values of lactate in group 2 and 3 exhibited significantly lower values than in group 1. In ultrastructural assessment, the mean myocardial mitochondria scores in group 1, group 2, and group 3 were 2.14$\pm$0.10, 1.52$\pm$0.57, and 2.10$\pm$0.16. Conclusion: HTK solution provides adequate myocardial protection with some advantages over DelNido solution in isolated rat hearts.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Cardioprotective Effect of Calcium Preconditioning and Its Relation to Protein Kinase C in Isolated Perfused Rabbit Heart (적출관류 토끼 심장에서 칼슘 전처치에 의한 심근보호 효과와 Protein Kinase C와의 관계)

  • 김용한;손동섭;조대윤;양기민;김호덕
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.603-612
    • /
    • 1999
  • Background : It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. Material and Method : The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) Method: The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. Result: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19∼23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. Conclusion: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.

  • PDF

Ischemic Preconditioning and Its Relation to Glycogen Depletion (허혈성 전처치와 당원 결핍과의 관계)

  • 장대영;김대중;원경준;조대윤;손동섭;양기민;라봉진;김호덕
    • Journal of Chest Surgery
    • /
    • v.33 no.7
    • /
    • pp.531-540
    • /
    • 2000
  • Baclgrpimd; Recent studies have suggested that the cardioprotective effect of ischemic preconditioning(IP) is closely related to glycogen depletion and attenuation of intracellular acidosis. In the present study, the authors tested this hypothesis by perfusion isolated rabbit hearts with glucose(G) is closely related to glycogen depletion and attenuation of intracellular acidosis. In the present study, the authors tested this hypothesis by perfusion isolated rabbit hearts with glucose(G)-free perfusate. Material and Method; Hearts isolated from New Zealand white rabbits(1.5~2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45 min global ischemia followed by 120 min reperfusion with IP(IP group, n=13) or without IP(ischemic control group, n=10). IP was induced by single episode of 5 min global ischemia and 10 min reperfusion. In the G-free preconditioned group(n=12), G depletion was induced by perfusionwith G-free Tyrode solution for 5 min and then perfused with G-containing Tyrode solution for 10 min; and 45 min ischemia and 120 min reperfusion. Left ventricular functionincluding developed pressure(LVDP), dP/dt, heart rate, left ventricular end-distolic pressure(LVEDP) and coronary flow (CF) were measured. Myocardial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific peptide and PKC isozymes were analyzed by Western blot with monoclonal antibodies. Infarct size was determined by staining with TTC(tetrazolium salt) and planimetry. Data were analyzed by one-way analysis of variance (ANOVA) and Turkey's post-hoc test. Result ; In comparison with the ischemic control group, IP significantly enhanced functional recovery of the left ventricle; in contrast, functional significantly enhanced functional recovery of the left ventricle; in contrast, functional recovery were not significantly different between the G-free preconditioned and the ischemic control groups. However, the infarct size was significantly reduced by IP or G-free preconditioning(39$\pm$2.7% in the ischemic control, 19$\pm$1.2% in the IP, and 15$\pm$3.9% in the G-free preconditioned, p<0.05). Membrane PKC activities were increased significantly after IP (119%), IP and 45 min ischemia(145%), G-free [recpmdotopmomg (150%), and G-free preconditioning and 45 min ischemia(127%); expression of membrane PKC isozymes, $\alpha$ and $\varepsilon$, tended to be increased after IP or G-free preconditioning. Conclusion; These results suggest that in isolated Langendorff-perfused rabbit heart model, G-free preconditioning (induced by single episode of 5 min G depletion and 10 min repletion) colud not improve post-ischemic contractile dysfunction(after 45-minute global ischemia); however, it has an infarct size-limiting effect.

  • PDF

The Respiratory and Hemodynamic Effects of Prone Position According to the Level of PEEP in a Dog Acute Lung Injury Model (잡종견 급성폐손상 모델에서 Prone position 시행시 PEEP 수준에 따른 호흡 및 혈류역학적 효과)

  • Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.140-152
    • /
    • 1998
  • Background: Prone position improves oxygenation in patients with ARDS probably by reducing shunt Reduction of shunt in prone position is thought to be effected by lowering of the critical opening pressure (COP) of the dorsal lung because the pleural pressure becomes less positive in prone position compared to supine position. It can then be assumed that prone position would bring about greater improvement in oxygenation when PEEP applied in supine position is just beneath COP than when PEEP is above COP. Hemodynamically, prone position is expected to attenuate the lifting of cardiac fossa induced by PEEP. Based on these backgrounds, we investigated whether the effect of prone position on oxygenation differs in magnitude according to the level of PEEP applied in supine position, and whether impaired cardiac output in supine position by PEEP can be restored in prone position. Methods: In seven mongrel dogs, $PaO_2/F_1O_2$(P/F) was measured in supine position and at prone position 30 min. Cardiac output (CO), stroke volume (SV), pulse rate (PR), and pulmonary artery occlusion pressure (PAOP) were measured in supine position, at prone position 5 min, and at prone position 30 min. After ARDS was established with warmed saline lavage(P/F ratio $134{\pm}72$ mm Hg), inflection point was measured by constant flow method($6.6{\pm}1.4cm$ $H_2O$), and the above variables were measured in supine and prone positions under the application of Low PEEP($5.0{\pm}1.2cm$ $H_2O$), and Optimal PEEP($9.0{\pm}1.2cm$ $H_2O$)(2 cm $H_2O$ below and above the inflection point, respectively) consecutively. Results : P/F ratio in supine position was $195{\pm}112$ mm Hg at Low PEEP and $466{\pm}63$ mm Hg at Optimal PEEP(p=0.003). Net increase of P/F ratio at prone position 30 min, however, was far greater at Low PEEP($205{\pm}90$ mm Hg) than at Optimal PEEP($33{\pm}33$ mm Hg)(p=0.009). Compared to CO in supine position at Optimal PEEP($2.4{\pm}0.5$ L/min), CO in prone improved to $3.4{\pm}0.6$ L/min at prone position 5 min (p=0.0180) and $3.6{\pm}0.7$ L/min at prone position 30 min (p=0.0180). Improvement in CO was attributable to the increase in SV: $14{\pm}2$ ml in supine position, $20{\pm}2$ ml at prone position 5 min (p=0.0180), and $21{\pm}2$ ml at prone position 30 min (p=0.0180), but not to change in PR or PAOP. When the dogs were turned to supine position again, MAP ($92{\pm}23$ mm Hg, p=0.009), CO ($2.4{\pm}0.5$ L/min, p=0.0277) and SV ($14{\pm}1$ ml, p=0.0277) were all decreased compared to prone position 30 min. Conclusion: Prone position in a dog with saline-lavaged acute lung injury appeared to augment the effect of relatively low PEEP on oxygenation, and also attenuate the adverse hemodynamic effect of relatively high PEEP. These findings suggest that a PEEP lower than Optimal PEEP can be adopted in prone position to achieve the goal of alveolar recruitment in ARDS avoiding the hemodynamic complications of a higher PEEP at the same time.

  • PDF

Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter (토크 측정과 시차주사열량계를 이용한 수용성 고분자 화합물의 하이드레이트 저해 성능 평가)

  • Shin, Kyuchul;Park, Juwoon;Kim, Jakyung;Kim, Hyunho;Lee, Yohan;Seo, Yongwon;Seo, Yutaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.814-820
    • /
    • 2014
  • In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP ${\mu}$-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP ${\mu}$-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP ${\mu}$-DSC.

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.