• Title/Summary/Keyword: Flow over a Cylinder

Search Result 154, Processing Time 0.02 seconds

Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump (유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구)

  • Lee, Sunjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.

Measurement of Two-Dimensional Skin Friction Distribution Using the Overall Fringe Images (간섭영상을 이용한 이차원 표면전단응력 분포 측정에 관한 연구)

  • Lee Han-Sang;Lee Yeol;Yoon Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • An experimental research program providing knowledge to measure two-dimensional skin friction variation over a certain region of model surface is presented. In the oil-fringe imaging skin friction(FISF) technique, local slope of a thin oil applied on a test surface is measured from the interference fringe patterns on the oil surface, and its information is then related to the applied shear over the oil by the thin-oil lubrication theory. The FISF technique has been applied for a separation flowfield ahead of a circular cylinder vertically mounted on a flat plate, and it has been found that the FISF skin friction results show good comparison with the other numerical/experimental data obtained for similar conditions. implying an applicability of the technique.

Solid-liquid mixture flow characteristics in an inclined slim hole annulus (Slim hole 경사 환형관내 고-액 혼합유동 특성에 관한 연구)

  • Suh, Byung-Taek;Han, Sang-Mok;Woo, Nam-Sub;Kim, Young-Ju;Hwang, Young-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1315-1320
    • /
    • 2008
  • An experimental study was carried out to study the solid-liquid mixture upward flow in a vertical and inclined annulus with rotating inner cylinder. Lift forces acting on a fluidized particle plays a central role in many importance applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surfaces, etc. Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. Effect of annulus inclination and drill pipe rotation on the carrying capacity of drilling fluid, particle rising velocity, and pressure drop in the slim hole annulus have been measured for fully developed flows of water and of aqueous solutions.

  • PDF

Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression (레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

Towards Prediction of Unsteady Turbulent Flow over a Square Cylinder using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 정사각주 주위의 비정상 난류유동의 예측)

  • Lee Sangsan
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • 비유선형 물체 주위의 유동은 정체유동, 경계층 박리 및 재부착, 주기적 와열의 생성등의 복잡한 유동현상이 공존한다. 이와 같은 유동의 2-방정식 난류모델을 이용한 정확한 예측은 일반적으로 불가능 하다고 인식되어 왔으나, 본 연구에서는 기존의 비교적 단순한 난류모델을 활용한 정사각주 주위의 비정상 난류유동의 예측 가능성을 체계적으로 규명하였다. 적절한 난류모델의 선정과 더불어 시간 정확도, 공간 정확도 및 대류항 처리법 등이 해석의 결과에 미치는 영향을 살펴 보았다. 기존의 표준 κ-ε모델은 정체점 주위에서 난류생성항의 과도한 예측으로 말미암아 재부착 및 와열생성의 정확한 예측이 불가능 하였으나, RNG κ-ε 모델을 사용한 경우 이와 같은 현상을 제거 할 수 있었다. 그러나 이 경우에도 예측의 정확도가 시간 증분, 격자의 크기 및 대류항 처리법 등에 영향을 받았으며, 특별히 대류항 처리법에 따라 상당히 민감하게 변하는 것을 알 수 있었다.

  • PDF

Experimental Study on the Flow Behind an Axisymmetric Backward-Facing Step (축대칭 하향단 흐름에 대한 실험적 연구)

  • 김경천;부정숙;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2463-2476
    • /
    • 1994
  • Local mean fluctuating velocity components were measured in the separating and reattaching axisymmetrc region of turbulent boundary layer over the wall of convex cylinders placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. Measurements were made with three different diameters of cylinders with four different diameters of cylinders with four different diameter of the obstructions. The range of Reynolds number based on step height was between 5,000 to 25,200. The study demonstrates that the reattachment length decreases with decreasing cylinder radius and is always shorter than that for the two-dimensional backward-facing step flow at the condition of the same step height. It was also observed that the turbulent kinetic energy in the recirculating region increases with an increases in the radius of convex curvature. The measured velocity field suggests that the transverse curvature can effect definitely the formation of corner eddy.

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Studies on the Film Cooling Characteristics of Turbine Blade Cylindrical and Shaped Holes (원통형과 변형된 분사홀을 갖는 터빈 블레이드의 막냉각 특성에 관한 연구)

  • Kim, S.-M.;Kim, Youn J,;Cho, H.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.334-338
    • /
    • 2001
  • In order to investigate the effects of various injection hole shapes on the film cooling of turbine blade, three test models having cylindrical and shaped holes were used. A three-dimensional Navier-Stokes code with standard k-$\epsilon$ model was used to compute the film cooling coefficient on the film cooled turbine blade. Over 330,000 grids were used to compute the flow over the blade. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The turbulence intensity kept at $5.0\%$ for all inlets. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of test model were calculated. Temperature was visualized using cartesian cut-cell method to obtain traces of the injected secondary air on the test surface, so we could interpret the film effectiveness as temperature distributions.

  • PDF

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.