• 제목/요약/키워드: Flow over Cylinder

검색결과 160건 처리시간 0.025초

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

서로 다른 캐비테이션 모델을 이용한 실린더 주위의 캐비테이션 유동현상 전산해석 (NUMERICAL ANALYSIS OF CAVITATING FLOW PAST CYLINDER WITH THREE DIFFERENT CAVITATION MODELS)

  • 김승윤;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.60-66
    • /
    • 2011
  • Engineering interests of submerged bodies and turbomachinery has led researchers to study various cavitation models for decades. The governing equations used for the present work are the two-phase Navier-Stokes equations with homogeneous mixture model. The solver employed on implicit dual time preconditioning algorithm in curvilinear coordinates. Three different cavitation models were applied to two axisymmetric cylinders and compared with experiments. It is concluded that the Merkle's new cavitation model has successfully accounted for cavitating flows and well captured the re-entrant jet phenomenon over the 0-caliber cylinder.

회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 (Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

경사진 동심원통 사이의 환상공간에서 자연대류 열전달 (Natural Convection in the Annulus between Concentric Inclined Cylinders)

  • 김찬원;권순석
    • 태양에너지
    • /
    • 제7권1호
    • /
    • pp.53-60
    • /
    • 1987
  • Natural convection in the annulus between concentric inclined cylinders has been studied by the numerical analysis. Governing equations are numerically solved by means of successive over-relaxation methods for a range in orientation from horizontal to vertical. It is found that flow patterns can also be observed the co-axial double spiral. As the angle of inclination is increased, the center of the eddy is shifted into the lower part of annulus and flow structure is apparently changed. In the present study, the maximum local Nusselt numbers for the inner and outer walls at the vertical cylinder increase more than those at the horizontal cylinder by 71%, 42% respectively. Consequently the effect of inclination on the heat transfer is considerably large.

  • PDF

다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측 (Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine)

  • 이병해;이재철;송준호
    • 오토저널
    • /
    • 제13권2호
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구 (Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles)

  • 양준모;유정열
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1979-1989
    • /
    • 1992
  • 본 연구에서는 말굽와류에 대한 전반적인 사항을 고찰하는 한편, 실린더의 기 하학적 형상이 말굽와류에 미치는 영향을 정성적으로 고찰하는 데 있다. 그러므로 본 실험에서는 먼저 경계층이 형성되어 있는 평판에 원형 실린더를 설치하여, 말굽와 류에 의한 3차원 유동현상을 고찰하고, 또한 동일한 평판에 쐐기형상의 실린더를 설치 하여, 그 주위에서 발생하는 3차원 유동현상과 원형 실린더 주위에서 일어나는 3차원 유동현상과의 정성적인 비교를 통하여, 말굽와류에 의한 3차원 유동손실을 줄일 수 있 는 가능성을 제시하고자 한다.

극초음속 유동의 열전달 예측에 관한 수치해석적 연구 (Computational Study on the Heat Transfer Prediction Hypersonic Flows)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.27-30
    • /
    • 2007
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environments during their flight regimes. One of the most important topics of research in hypersonic aerodynamics is to find a reasonable way of calculating either the surface temperature or the heat flux to surface when its temperature is held fixed. This requires modeling of physical and chemical processes. Hyperbolic system of equations with stiff relaxation method are being identified in recent literature as a novel method of predicting long time behavior of systems such as gas at high temperatures. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flow over a 2-D cylinder. Present heat flux results over the cylinder compared well with the experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

A Laboratory Study of Formation of 'The Warm Core' in the East Sea of Korea

  • NA Jung Yul;KIM Bong Ho
    • 한국수산과학회지
    • /
    • 제22권6호
    • /
    • pp.415-423
    • /
    • 1990
  • In a laboratory model the response of the boundary layer flow over topography is studied in a rotating sliced cylinder by employing the source-sink analogy with Ekman layer dynamics. The boundary layer flow is produced by two different fluid. In the first experiment homogeneous fluid is used both for the source and the working fluid of the container. In the second experiment a denser fluid is used for the source with the same working fluid. For the homogeneous western boundary layer flow both the northward and the southward flow were affected by the topography(ridge) to produce a cyclonic motion near the ridge. When woughward moving heavy boundary flow of slower speed and the northward moving faster flow were present at the same time, the splitting of southward flow and the separating of the northward flow were observed with a cyclonic motion at the ridge. The most important factor that influence production of the cyclonic motion has been turned out to be the presence of the topography in the western boundary layer. In particular the role of the southward moving heavy flow over the interior flow pattern was found to be very significant.

  • PDF

동심원 형상 홈이 파여진 원판이 회전하고 있을 때의 실린더 내부유동에 관한 연구 (Flow in a cylinder driven by rotating disk with concentrically-grooved surface)

  • 윤명섭;박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.622-627
    • /
    • 2003
  • A numerical study is made of a flow in a cylinder with a rotating grooved endwall disk. The aim is to describe differences in the flow fields when there is concentrically-grooved obstacle characterized by amplitude(a) and wave number(N). The Reynolds number(Re) is varied from $10^{3}$ to $10^{4}$ and the aspect ratio(Ar) fixed to 1.0 for the most part of the simulation. For the various cases of amplitude(a) and wave number(N), numerical results are acquired. As the endwall groove roughness increases until certain limit, the interior azimuthal velocity component(v) increases drastically. But over the limit, the swirl motion chararcterized by velocity v decreases and finally it approaches much alike Ar=1.0-a case. The reason of activating swirl motion is based on increasing of torque transported by endwall disk. Torque coefficients($C_{T}$) are aquired for the various (a,N,Re) combinations and the limiting phenomena of swirl motion activation is explained.

  • PDF

FVS를 이용한 터널을 통과하는 초음속 실린더 주위의 충격파 거동 해석 (The Behavior of Shock Wave through a Circular Tunnel around Supersonic Cylinder using FVS Upwind Scheme)

  • 고민호;신창훈;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.29-35
    • /
    • 1999
  • A two-dimensional Euler code based on flux vector splitting scheme has been developed to simulate the behavior of supersonic shock wave over the cylinder. AF+ADI scheme was used for time integration. The sliding multiblock technique was implemented to handle the relative motion of the moving cylinder and the stationary tunnel. The code is validated with a problem of subsonic flow around a Naca-0012 airfoil. The Computation results show complex phenomena of the propagation of shock waves and the reflection as expansion wave at tunnel exit.

  • PDF