• Title/Summary/Keyword: Flow of Fluid

Search Result 7,375, Processing Time 0.036 seconds

Studies on the phrases of Yellow Emperor's internal classic(黃帝內經) for the physiology on the spleen and stomach (비위생리(脾胃生理)에 수용(授用)되는 황제내경(黃帝內經) 어구(語句)에 관(關)한 연구(硏究))

  • Won, Jin-Hui
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.453-489
    • /
    • 1995
  • The research of the phrases related with physiology of stomach and spleen in the contents of Huang Di Nei Jing(黃帝內經) known as the Bible of oriental medicine will make a contribution to a deep understanding of disease of stomach and spleen and a proper clinical diagnosis and treatment of them. In this research of the most appropriate glosses recorded nine kinds of representative medical books including Huang Di Nei Jing Somoon(黃帝內經素問) of Wang Bing(王氷) were picked out: The summaries of the selected contents are as follows: 1. The word 'saliva(涎)' in 'the spleen controls saliva(脾爲涎)' can be viewed as a generic term referring to oral cavity secretion gland as well as the secretion fluid of salivary gland. 2. The phases 'a large reservoir(太倉)', barn organs', 'a reserboir of food stuff', 'a stomach as the market(胃爲之市)', etc mean the function of stomach to receive food(胃主受納). 3. The phase 'generation of five tastes(五味出焉)' means both 'the function of stomach to transform food into chyme(胃主腐熟)' and 'the channelling function of spleen.(脾主運化)' 4. The flowing of the food-Qi(食氣) into stomach brings about spreading Jung(精) into liver and then percolating Jung(精) flow into channel. The channel-Qi(脈氣) flows into lung through channel. As a result, all kinds of channels gather together in lung and Jung(精) is sent into skin and hair. The assembly of Jung(精) with skins and channels moves Qi(氣) into fu-organ and so jung(精) and mental activity(神明) in fu-organ(府) come to be in four organs(四臟). Then if Qi(氣) comes back to power balance unit(權衡) being in the state of equilibrium(權衡以平), the hole of Qi(氣口) comes to determine the matter of life and death through achieving Chun-quan-chi(-寸-關-尺). The above mentioned phrases means the digestion, asorption and transmission of food. When food is taken in stomach, Jung-Qi(精氣) comes to be over flowed upward into spleen, back into lung, finally downward into bladders through water-conduit(水道) controlled by lung. When water- Jung(水精) radiates into whole body with channels of five organs(五臟), both of them fit together with and yin-yang(陰-陽). Therefore, the grasping of the rise and decline of yin-yang(陰C-陽) is necessary to consult patients. The above mentioned phrases is properly viewed to designate the asorption, transmission and excretion of food. 5. Spleen controls flesh(脾之合肉也), the state of spleen is known by human lips, and what this means is that liver plays functions of spread and expansion(肝主疏泄). 6. The phrase 'Jung Jung'((中精)) in 'gallbladder dominates Jung jung(膽主中精)', which in one of the specific expression of 'liver plays functions of spread and expansion(肝主疏泄). 7. It is right that the phase 'The eleven organs in all are determined by gallbladder'(凡十,一臟取決於膽也) is correctly paraphrased as 'only one of ten organs, spleen, is determined by gallbladder'.(凡十,一臟取決於膽也), 8. The small intestine is an organ. which receives the materials digested and sends them out. This means that the function of transforming materials(化物) factually refers to that of separating clearity and blur(泌別淸濁). And it is also thought to have the function of ascending clearity and descending blur(升淸降濁), 9. A large intestine is a transmitting organ(傳導之官) from which a change comes out(變化出焉). the phrase 'change'(變化) in this sentence means both the intake of water and nutrition and the formation procedure of stool through excretion of mucocele.

  • PDF

Contrast Media in Abdominal Computed Tomography: Optimization of Delivery Methods

  • Joon Koo Han;Byung Ihn Choi;Ah Young Kim;Soo Jung Kim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • Objective: To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed. Materials and Methods: In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range. Results: A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2 3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased. Conclusion: Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.

  • PDF

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Microbiological Hazard Analysis for HACCP System Application to Non Heat-Frozen Carrot Juice (비가열냉동 당근주스의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Lee, Ung-Soo;Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • This study has been performed for about 270 days at analyzing biologically hazardous factors in order to develop HACCP system for the non heat-frozen carrot juice. A process chart was prepared by manufacturing process of raw agricultural products of non heat-frozen carrot juice, which was contained water and packing material, storage, washing, cutting, extraction of the juice, internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, Enterohemorrhagic E. coli before and after washing raw carrot, Standard plate count was $4.7{\times}10^4CFU/g$ before washing but it was $1.2{\times}10^2CFU/g$ detected after washing. As a result of testing airborne bacteria (Standard plate count, Coliform group, Yeast and Fungal) depending on each workplace, number of microorganism of in packaging room, shower room and juice extraction room was detected to be 10 CFU/Plate, 60 CFU/Plate, 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of Standard plate count, Coliform group and Staphylococcus aureus was represented to be high as $6{\times}10^4CFU/cm^2$, $0CFU/cm^2$ and $0CFU/cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, Coliform group was not detected in all the specimen but Standard plate count was most dominantly detected in scouring kier, scouring kier tray, cooling tank, grinding extractor, storage tank and packaging machine-nozzle as $8.00{\times}10CFU/cm^2$, $3.0{\times}10CFU/cm^2$, $4.3{\times}10^2CFU/cm^2$, $7.5{\times}10^2CFU/cm^2$, $6.0{\times}10CFU/cm^2$, $8.5{\times}10^2CFU/cm^2$ respectively. As a result of analyzing above hazardous factors, processing process of ultraviolet ray sterilizing where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and critical level (critical control point) was set at flow speed is 4L/min. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Analysis of Ruminal Dry Matter and Crude Protein Digestibility on Major Roughage, Wormwood and Green Tea (주요 조사료원과 쑥, 녹차의 반추위 건물 및 조단백질 소화율에 대한 분석)

  • Lee, Shin Ja;Lee, Su Kyoung;No, Jin Gu;Kim, Do Hyung;Lim, Jung Hwa;Moon, Yea Hwang;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.139-152
    • /
    • 2016
  • The comparative in vitro and in situ analysis were conducted to evaluate the rumen degradability and physical structure of domestic roughage as rice straw, timothy, alfalfa, wormwood and green tea. The feedstuffs incubated with rumen fluid and was used to determine gas production, microbial growth rate and pH changes in an in vitro experiment. The gas production was increased during incubation times and was significantly(p<0.05) lower in green tea than other feedstuffs. The microbial growth rate in the feedstuffs was increased during incubation times. However, microbial growth rate was significantly(p<0.05) lower in wormwood and green tea than other feedstuffs. Ruminal pH was decreased during incubation times, and timothy was the lowest, and rice straw was the highest among feedstuffs. The disappearance rate of dry matter(DM) and crude protein(CP) in all feedstuffs were increased during incubation times and green tea was the highest(p<0.05) compared with other feedstuffs. In effective degradability, when rumen out-flow rate was assigned to 4%, wormwood showed the highest in DM, and alfalfa was the highest in CP. Whereas, green tea was the highest in both in situ DM and CP degradability. Many cilia on the surface and stoma of wormwood and stoma in green tea were observed by scanning electron microscopy. Microbes breaked down the cilia at the beginning and then degraded the surface in wormwood. In case of green tea, microbes attached to stoma. Therefore, wormwood and green tea have a potential value as ruminal feed stuffs.