• Title/Summary/Keyword: Flow of Fluid

Search Result 7,322, Processing Time 0.037 seconds

Simultaneous Measurement of Fluid Velocity and Particle Velocity in a Particle-Containing Fluid Flow (입자가 포함된 유동장에서 유체속도와 입자속도의 동시 측정기법)

  • Jin Dong-Xu;Lee Dae-Young;Lee Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.355-363
    • /
    • 2005
  • A novel method for simultaneously measuring the fluid velocity and the large particle velocity in a particle-containing fluid flow is developed in this study. In this method, the fluid velocity and the large particle velocity are measured by PIV and PTV, respectively. The PIV and PTV images are obtained from the same flow images. Since a PIV result represents the average displacement of all particles in an interrogation area, it will include an error caused by the relative displacement between the large particles and the fluid. In order to reduce the false influence of large particles on the PIV calculation, the mean brightness of small PIV particle images is substituted to the locations of large particles in the PIV images. The simulation results showed that the new method significantly reduces the PIV error caused by the large particles even at the case where the large particles occupy area fraction as large as $20\%$ of the full image.

A Laboratory Study of Formation of 'The Warm Core' in the East Sea of Korea

  • NA Jung Yul;KIM Bong Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.6
    • /
    • pp.415-423
    • /
    • 1990
  • In a laboratory model the response of the boundary layer flow over topography is studied in a rotating sliced cylinder by employing the source-sink analogy with Ekman layer dynamics. The boundary layer flow is produced by two different fluid. In the first experiment homogeneous fluid is used both for the source and the working fluid of the container. In the second experiment a denser fluid is used for the source with the same working fluid. For the homogeneous western boundary layer flow both the northward and the southward flow were affected by the topography(ridge) to produce a cyclonic motion near the ridge. When woughward moving heavy boundary flow of slower speed and the northward moving faster flow were present at the same time, the splitting of southward flow and the separating of the northward flow were observed with a cyclonic motion at the ridge. The most important factor that influence production of the cyclonic motion has been turned out to be the presence of the topography in the western boundary layer. In particular the role of the southward moving heavy flow over the interior flow pattern was found to be very significant.

  • PDF

Finite Element Vibration Analysis of Cylindrical Shells with Internal Fluid Flow (내부 유체 유동을 포함하는 원통 셸의 유한요소 진동해석)

  • 서영수;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.911-916
    • /
    • 2003
  • A method for the dynamic analysis of thin-walled cylindrical shell conveying steady fluid flow presents. The dynamics of thin-walled shell is based on Sanders' theory and the fluid flow in cylindrical shell is treated inviscid, incompressible fluid. A dynamic coupling conditions at fluid-structure interface is used. The equations of motion are solved by a finite element method and validated by comparing the natural frequency with other published results and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

A Study on Dehumidification Characteristics of Hollow Fiber Membrane Module for Pneumatic Power Unit Using Fluid-Solid Interaction Analysis (유동-구조 연성해석을 이용한 공압용 파워 유닛에 사용되는 중공사막 모듈에 대한 제습특성 연구)

  • Jeong, Eun-A;Khan, Haroon Ahmad;Lee, Kee-Yoon;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • In this study, flow analysis and fluid-solid interaction analysis were conducted on a hollow fiber membrane module used for analysis of dehumidification characteristics. To ensure the reliability of the flow analysis results, the dehumidification experiment was performed under the temperature of 30℃ and relative humidity of 30% RH. The results of the dehumidification experiments were compared with the flow analysis results. The results of dehumidification experiments and flow analysis had a difference of approximately 5%. A 1-Way fluid-solid interaction analysis with various materials was conducted. From the results, it was found that the baffle with the largest shape deformation (polyethylene material) was subjected to 2-way fluid-solid interaction. The analysis of fluid flow and dehumidification characteristics were analyzed according to the shape deformation of the baffle.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Evaluation of the Effect on the Valve Flow Coefficient by Attached Fitting (밸브 후단 피팅에 따른 밸브 용량계수의 영향 평가)

  • Kang, Seung-Kyu;Lee, Won-Sik;Yoon, Joon-Yong;Min, Kyung-Wha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.29-37
    • /
    • 2003
  • This study was undertaken to verify the effect of flow coefficient when a globe control valve was attached by different type of fitting. The valve flow coefficient is usually determined by measuring the flow rate and the pressure drop with the connection of straight pipe through the valve. The effect of different fitting that is mounted on the downstream of the valve is studied. Four types of fittings and three distances between the valve and a downstream fitting are compared parametrically to investigate the effect on the flow coefficient of it. Measured flow coefficient and numerically predicted value by using computational fluid dynamics were compared in detail. It is concluded that the flow coefficient is reduced if the fitting is attached after a valve, but the effect of different type of fitting is not crucial.

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF