• 제목/요약/키워드: Flow of Fluid

검색결과 7,335건 처리시간 0.034초

자기점성유체 댐퍼의 자기장 및 유동 해석에 따른 성능비교 (Comparison of Performances refer to Magnetic and Fluid Analysis of Magneto-Rheological Flow Damper)

  • 송준한;손성완;이규섭;전종균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.98-102
    • /
    • 2009
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. To manufacture the magneto-rheological fluid damper that uses such characteristics of the fluid, a flow analysis of the inner damper was conducted to forecast the damper's capacity. In addition, using the finite element method software, analysis on the characteristics of electromagnetic field around the coil operation unit inside the damper. Based on the result of the analysis, a single core damper and a double core damper were built and tested for their dynamic function. Based on the result of the experiment, the propriety of the flow analysis was demonstrated, and the proposed model was verified.

  • PDF

유압 완층기 내에서의 오일 유동에 대한 CFD 해석 (A CFD Analysis of the Oil Flow in a Hydraulic Shock Absorber)

  • 박경택;박태조
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.20-26
    • /
    • 2008
  • Various types of hydraulic shock absorbers are widely used in many fields because of its numerous advantages. However, in order to design adequate damping characteristics, accurate flow data near the orifices are required essentially. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is adopted to investigate the flow characteristics near orifices of a shock absorber. Static pressure and velocity vector distributions, fluid path lines are presented for compression/tension strokes and various piston speeds. In order to validate the result of analysis, the numerically obtained damping forces are compared with those of analytical estimations obtained by modified Bernoulli equation. The results reported herein will provide better understanding of the detailed flow fields within shock absorber, and the CFD analysis method proposed in this paper can be used in the design of other types of hydraulic shock absorber.

  • PDF

압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석 (Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid)

  • 박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

MHD Pulsatile Flow and Heat Transfer of Two Immiscible Couple Stress Fluids Between Permeable Beds

  • Kumar, Deepak;Agarwal, Manju
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.323-351
    • /
    • 2021
  • The present paper addresses magnetohydrodynamic pulsating flow and heat transfer of two immiscible, incompressible, and conducting couple stress fluids between two permeable beds. The flow between the permeable beds is assumed to be governed by Stokes' [28] couple stress fluid flow equations, whereas the dynamics of permeable beds is determined by Darcy's law. In this study, matching conditions were used at the fluid-fluid interface, whereas the B-J slip boundary condition was employed at the fluid-porous interface. The governing equations were solved analytically, and the expressions for velocity, temperature, mass flux, skin friction, and rate of heat transfer were obtained. The analytical expressions were numerically evaluated, and the results are presented through graphs and tables.

인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구 (Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart)

  • 박명수;심은보;고형종;박찬영;민병구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

평판형 ER-Valve의 성능실험에 관한 연구 (Study on Performance Test of Plate Type ER-Valves)

  • 장성철;염만오;김도태;박재범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.321-324
    • /
    • 2002
  • Hydraulic valve control the pressure and the How of fluid by the hydraulic oil transfered from pump but the ER fluid consists of solid particles of micrometer in size and insulating oil so in the general hydraulic valve. We invented ER-Valve using ER fluid as working fluid. The ER fluid, working fluid of ER-Valve is a functional fluid to represent the feature of fluid according to strength of electric field. In this research we made our own 4 types of plate type ER-Valve which has same surface but different width and length and then we conducted performance test. We measured flow rate and pressure drop of fluid which is flowing in the ER-Valve according to the electric field strength to conduct this test. We modeling ER-Valve relating to ER-Valve system and yield shear stress according to the strength of electric field. We used the pressure drop according to the strength of electric field by differential pressure gauge in the our own made ER-Valve. This test reviewed experimental the special changes of ER-Fluid in the steady flow condition.

  • PDF

Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct

  • Sohn Chang-Hyun;Chang Jae-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.382-390
    • /
    • 2006
  • The present study proposes a modified temperature-dependent non-Newtonian viscosity model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent viscosity, buoyancy, and secondary flow caused by the second normal stress difference are considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model give good agreement with the experimental results. The heat transfer enhancement of viscoelastic fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

Thickness Effect on the Structural Durability of a Bileaflet Mechanical Heart Valve

  • Kwon, Young-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.5-12
    • /
    • 2003
  • This paper discusses about the thickness effects on the structural durability of a bileaflet mechanical heart valve (MHV). In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis for the deformed leaflet are required sequentially and simultaneously. Fluid forces computed in the fluid mechanics analysis on the blood flow are used in the kinetodynamics analysis for the leaflet motion. Thereafter, the structural mechanics analysis for the deformed leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet becomes thinner and thinner.

기체 흐름에 고체입자가 섞인 파이프 내의 이상유동에 대한 수치 해석 (Numerical Simulation for an Air-Solid Two-Phase Flow in a Vertical Pipe)

  • 박순일;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.41-46
    • /
    • 2002
  • A numerical simulation was made to determine the motion of particles in the fluid. The simulation is based on the Eulerian-Lagrangian method. The fluid motion was solved using a PISO-based finite-element method and a $\kappa-\epsilon$ model of turbulence. In the Lagrangian method for the solid phase, the trajectories of particles are calculated by integrating the equations of motion of a single Particle, and the collision between particles are taken into account. The influence of particles on the fluid phase is taken into account by introducing source terms in the Eulerian equations govering the fluid flow. It is known as the particle-source-in-cell (PSIC) method. Also, the turbulent effect in the particles and fluid notion is considered. The numerical results were compared with the experiment for a two-phase flow in a vertical pipe.

  • PDF

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.