• Title/Summary/Keyword: Flow mechanism

Search Result 2,323, Processing Time 0.029 seconds

세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION)

  • 문바울;김재소
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

Transition of Rivulet Flow from Linear to Droplet Stream

  • Kim, Ho-Young;Kim, Jin-Ho;Kang, Byung-Ha;Lee, Seung-Chul;Lee, Jae-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.147-152
    • /
    • 2002
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. There exist several regimes of rivulet flow depending on various flow conditions. In this paper, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified.

수압을 받는 콘크리트의 투수성에 관한 연구 (Study on the Permeability of Concrete under Water Pressure)

  • 유조형;이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.719-722
    • /
    • 2005
  • The watertightness of concrete is judged by the depth of penetration of water forced in under pressure with the mechanism of flow of seepage water examined theoretically and experimentally. As a result, it is found that in the case of low water pressure approximately 0.15Mpa or less, the flow is Darcy seepage flow, the same as flow in an ordinary sand stratum, whereas in the case of high water pressure, the flow is diffused seepage flow accompanied by internal deformation of concrete. It is suggested that the watertightness of concrete be evaluated by seepage coefficient in the case of the former and diffusion coefficient in the case of the latter.

  • PDF

Influence of Blade Profiles on Flow around Wells Turbine

  • Suzuki, Masami;Arakawa, Chuichi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.148-154
    • /
    • 2008
  • The Wells turbine rotor consists of several symmetric airfoil blades arranged around a central hub, and the stagger angle is 90 degrees. These characteristics simplify the total construction of OWC type wave energy converters. Although the Wells turbine is simple, the turbine produces a complicated flow field due to the peculiar arrangement of blades, which can rotate in the same direction irrespective of the oscillating airflow. In order to understand these flows, flow visualization is carried out with an oil-film method in the water tunnel. This research aims to analyze the mechanism of the 3-D flows around the turbine with the flow visualization. The flow visualization explained the influence of attack angle, the difference between fan-shaped and rectangular wings, and the sweep angle.

잔류내 응집 와류의 수치 해석 (Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid)

  • 이승수;이영규;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF

축류송풍기의 실속셀 거동에 관한 실험적 연구 (Experimental Study on the Behavior of Stall Cell in an Axial Flow Fan)

  • 신유환;김광호;강창식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.643-646
    • /
    • 2002
  • Experimental study was conducted to reveal the flow mechanism under rotating stall in an axial flow fan. For this study unsteady pressure was measured using high frequency pressure transducers mounted on the casing wall of rotor passage and total pressure fields were measured at the rotor upstream and downstream. The measured pressure signal was analyzed by Wavelet Transform and Double Phase Locked Averaging Technique. From the result of unsteady pressure field of the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail. The pressure field was also analyzed in terms of the pressure distribution along pressure side and suction side of blade tip. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the characteristics of the stall cell in radial direction was provided.

  • PDF

원형 용기의 중심에서 벗어난 유출구 위치에 따른 회전배수 특성의 PIV 연구 (A PIV STUDY OF VORTEXING DURING DRAINING FROM Cylindric CONTAINERS)

  • 주명근;손창현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.89-92
    • /
    • 2007
  • 본 연구는 원형 용기에서 배수시 배수구멍의 위치가 중심선에서 벗어난 정도에 따른 배수율과 유동장의 변화를 이해하기 위하여 배수위치의 변화에 따른 배수흐름의 특성을 연구하였다. 이 연구의 목적은 서로 다른 위치의 배수구가 와류생성을 억제하는 원리에 대해 이해는 것이다. 원형 용기의 유동장을 가시화하기 위하여 PIV기법을 사용하였다. 그리고 배수가 있을 때와 없을 때에 대해, 각각 수직방향과 수평방향에서 결과를 얻었다.

  • PDF

정사각형 용기로부터 회전배수 특성의 PIV 연구 (A PIV STUDY OF VORTEXING DURING DRAINING FROM SQUARE CONTAINERS)

  • 주명근;손창현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.313-316
    • /
    • 2007
  • 본 연구는 정사각형 용기에서 배수시 유동장의 변화를 이해하기 위하여 용기의 모서리의 반경변화에 따른 배수흐름의 특성을 연구하였다. 이 연구의 목적은 서로 다른 반지름의 모서리가 와류생성을 억제하는 원리에 대해 이해는 것이다. 사각형 용기의 유동장을 가시화하기 위하여 PIV기법을 사용하였다. 그리고 배수가 있을 때와 없을 때에 대해, 각각 수직방향과 수평방향에서 결과를 얻었다.

  • PDF

Enhanced Crystallization of Si at Low Temperature by $O_2$ Flow during Deposition

  • Nam, Hyoung-Gin;Koo, Kyung-Hwan
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.15-18
    • /
    • 2007
  • Effects of $O_2$ flow during deposition on Si crystallization at low substrate temperature were studied. Silicon thin films were prepared on $SiO_2$ substrates in a low-pressure chemical vapor deposition chamber using a mixture of $SiH_4$ and $H_2$. In some cases $O_2$ was intentionally introduced during deposition. Growth of poly silicon was observed at the substrate temperature as low as $480^{\circ}C$ when $O_2$ was flowed during deposition implying that crystallization of Si was enhanced by $O_2$ flow. On the other hand, $O_2$ flow did not show any significant effects at higher substrate temperature, where deposition rate is relatively fast. Enhancement mechanism of Si crystallization by $O_2$ flow was suggested from these results.

  • PDF

High-flow nasal cannula oxygen therapy in children: a clinical review

  • Kwon, Ji-Won
    • Clinical and Experimental Pediatrics
    • /
    • 제63권1호
    • /
    • pp.3-7
    • /
    • 2020
  • High-flow nasal cannula (HFNC) is a relatively safe and effective noninvasive ventilation method that was recently accepted as a treatment option for acute respiratory support before endotracheal intubation or invasive ventilation. The action mechanism of HFNC includes a decrease in nasopharyngeal resistance, washout of dead space, reduction in inflow of ambient air, and an increase in airway pressure. In preterm infants, HFNC can be used to prevent reintubation and initial noninvasive respiratory support after birth. In children, flow level adjustments are crucial considering their maximal efficacy and complications. Randomized controlled studies suggest that HFNC can be used in cases of moderate to severe bronchiolitis upon initial low-flow oxygen failure. HFNC can also reduce intubation and mechanical ventilation in children with respiratory failure. Several observational studies have shown that HFNC can be beneficial in acute asthma and other respiratory distress. Multicenter randomized studies are warranted to determine the feasibility and adherence of HFNC and continuous positive airway pressure in pediatric intensive care units. The development of clinical guidelines for HFNC, including flow settings, indications, and contraindications, device management, efficacy identification, and safety issues are needed, particularly in children.