• Title/Summary/Keyword: Flow measurement method

Search Result 1,040, Processing Time 0.029 seconds

The Change in the Buddhist Architecture of the Unified Silla Period (668-935) (통일신라시대(統一新羅時代) 불교건축(佛敎建築)의 변화(變化))

  • Kim, Sung-Woo
    • Journal of architectural history
    • /
    • v.1 no.2 s.2
    • /
    • pp.68-84
    • /
    • 1992
  • The development of Buddhist architectures of the Unified Silla period have been generally understood to have paired pagoda instead of one which had been popular until before the unification. Besides the stylistic categorization of paired pagoda system, there had been no further investigation reported concerning whether there was any detailed process of change within the development of paired pagoda style. This paper aims to identify such change inside the development of paired pagoda style, which, externally, seems to be the same pattern of site design maintained throughout the period of Unified Silla that lasted for about three centuries. Since the temple sites of study are in the same pattern of layout, the method of investigation has to be such that can identify the subtle changes that, in external appearance, are not easily discernible. Hence, this research compared the dimensions of important measurement of five temple sites to be able to clarify the process of minor changes. Among many sites of Silla temples, only five were suitable for the research since detailed measurement were possible through field research or the report of excavation. They are the sites of Sachonwang-sa, Mangduk-sa, site of Kunsuri, and Bulguk-sa. Although the five sites have the same style of paired pagoda, it is clear that there were consistant flow of change. Even though the motivation of such change were not strong enough to change the site pattern itself, it resulted continuous minor changes such as the size and location of architectures. The size of image hall, for example, was growing larger and larger as time goes on, while, the size of Pagoda was getting smaller. In the same way, the size of middle gate became smaller while the size of lecture hall became larger, although the rate of change in these cases were not as severe as that of image hall and pagoda. At the same time, pagoda was coming closer to the middle gate leaving larger space in front of the image hall. Such aspect is even more meaningful considering the fact that the pagoda, from the 8th century in Japan and China, moved outside of the major precinct. The image hall, too, moved toward the middle gate slightly so that the space in front of the lecture hall became more spacious. Such changes, of course, were not accidental but they are the same continuous motivation of change that caused the changes before the period of unification. Enlargement of image hall and reduction of pagoda, for example, represent the changing relative importance of religious meaning. Hence, it is evident that one can not easily imterprete the development of one style only by categorizing it to be one same style. In the veiwpoint of the underlying motivation of change, the fact that one style persisted for a certain period of time, does not mean there had been no change, but means that it was the time of motivational accumulation, causing minor changes within the same style, to be able to create major change coming after.

  • PDF

The Study on Methods for Setting of Water Quality Goal and Estimation of Allocation Loads on TMDL System Using a Dynamic Water Quality Model (동적모델을 이용한 수질오염총량제 목표수질 설정 및 할당부하량 산정방안 연구)

  • Kim, Eun-Jung;Park, Bae-Kyung;Shin, Dong-Suk;Kim, Yong-Seok;Rhew, Doug-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.629-640
    • /
    • 2014
  • In this study, the applicability of dynamic water quality model to TMDL system was examined, methods for setting of water quality goal and estimation of allocation loads were suggested and results of applying these methods were analyzed. HSPF model was applied for Miho stream basin as a dynamic water quality model. The model was calibrated using measurement data obtained in 2009~2010 and showed satisfactory performance in predicting daily variations of flow rate and BOD concentration. Methods for TMDL application were categorized into 3 cases; water quality management (1) considering low flow condition(Case I), (2) considering entire period of the year (Case II) and (3) considering the worst water quality condition (Case III). BOD water quality goals at the end of Miho stream watershed increased in the order of Case IICase I>Case III. If further researches on base precipitation and method for model input of nonpoint source pollutant were carried out, water quality could be managed more reasonably and scientifically by applying dynamic water quality model to TMDL. The result of this study is expected to be used as primary data for TMDL using dynamic water quality model.

Potable Water Treatment Study using the Double Stage Fiber Filter for the Pre-treatment of the Reverse Osmosis Membrane (역삼투막 전처리로서의 2단 섬유상 여과기를 이용한 정수처리 연구)

  • Bae, Si-Youl;Jang, Hyung-Wook;Yun, Chang-Han
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • This study was to evaluate the performance of the Double stage Pore controllable fiber (DP) filter system as the pre-treatment of the RO membrane. The evaluation for the pre-treatment filter was performed through the indirect method, SDI (Silt Density Index) measurement of the filtrate. This study was done during Jan. 3 of 2009 to Dec. 3 of 2009 at OO Water Treatment Plant that was suppling industrial water to plants, and the raw water was contaminated lake water and it was fed to the system after clarification with coagulation. The average turbidity of the feed water and that of the filtrate was 0.79 NTU (0.28~4.01 NTU), and 0.16 NTU (0.04~0.50) respectively. And so the average turbidity removal efficiency was 77%. The filtrate flow rate and the backwash water flow rate was about 230 $m^3$/day and about 8.7 $m^3$/day respectively, and so the backwash rate was 3.8%. The data for some samples were obtained after a few days storage, and it caused the higher turbidity and SDI15 as the storage time was increased. But average SDI value of the filtrate was 3.6 (2.26~5.00) which was lower than minimum value required by the RO membrane manufacturer as the RO feed water to guarantee the life time of the RO membrane. So, the DP filter system was enough for the application as the pre-treatment of the RO membrane.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

A Preliminary Study on Measuring Void Fraction in a Fuel Rod Assembly by using an X-ray Imaging System (X선 영상 장치를 이용한 핵연료 집합체 내 기포율 측정을 위한 선행 연구)

  • Lee, Sun-Young;Oh, Oh-Sung;Lee, Se-Ho;Lee, Seung-Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.571-578
    • /
    • 2017
  • Bubbles are generated by the boiling of the cooling water when an accident occurs in the reactor and then in order to measure the void fraction, the Optical Fiber Probe(OFP) and optical camera are used in thermal hydraulic safety research. However, such an optical method is not suitable for measuring the void fraction in a $17{\times}17$ array of fuel rods due to the geometrical limitations. This study was conducted as a preliminary study using x-ray system and various phantoms before applying to rod bundles. Through radiographic and tomographic experiments, the tube voltage of the x-ray generator was 130 kVp and the tube current was 1 mA. In addition, it is possible to measure the hole of 1mm in size visually through the bubble resolution phantom, and it is confirmed that the contrast is relatively decreased in the inside of the freon in the case of the contrast evaluation using the road phantom. However, we could obtain good image without distortion when reconstructing the image. Bubble generation phantom experiments were used to confirm the flow direction of the bubbles and to acquire tomography images. The image J tool was used to measure the void fraction of 18 % for a single tomography image. This study has carried out previous researches for the measurement of the bubble rate around the nuclear fuel and could be used as a basic research for continuous research.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도 계측시 잡음원인과 대책)

  • Kwon, Soon-Tae;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the interference of Mie scattering, which is main obstacle of the measuring concentration with Rayleigh scattering, a hardware filter was installed for reducing the number density of particles. Furthermore a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. In addition, background noisy was reduced by adjusting the optical array and applying the pin hall and beam trap. The results show that LRS can provide useful information about concentration field and the software filter is very effective method to remove Mie interference.

Velocity-based decision of water quality measurement locations for the identification of water quality problems in water supply systems (상수도시스템 수질사고 인지를 위한 유속기반 수질계측기 위치 결정)

  • Hong, Sungjin;Lee, Chanwook;Park, Jiseung;Yoo, Do Guen
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.1015-1024
    • /
    • 2020
  • Recently, water pollution accidents have continued to occur in pipelines such as red water Incheon and Seoul. In order to recognize this water quality problem, it is necessary to install a water quality sensor in an appropriate location and measure it in advance to detect or block the water supply to the water faucet of the shelter. However, there are limitations, such as maintenance costs, to installing multiple water meters in all pipelines. Therefore, this study proposed a methodology for determining and prioritizing the installation location of flow-based water quality sensor for the recognition of water quality problems in pipelines. We applied the proposed procedure to the pipe break scenario. The results of the determination of the location of the water quality sensor were presented by applying it to the pipe network that actually operates the emergency pipe in Korea. The result of the decision showed that in the event of abnormal situation caused by the destruction of individual pipes, the flow rate of the pipes around the aqueduct and the tank may change rapidly, resulting in water quality accidents caused by turbidity. In the future, it is expected that the water quality monitoring point selection method, such as establishing an external pipe operation plan for pipe cleaning, will utilize the procedure for determining the location of the water quality sensor according to the velocity.

Experimental Investigation of Water Discharge Capability According to Shape of Sluice for Tidal Power Generation - I. Physical Experiment (조력발전용 수문 형상에 따른 통수성능에 관한 실험적 연구 - I. 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to improve the technique of designing shape of the sluice used for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, it was necessary to perform a precise experiment that is discriminated to previous feasibility studies or design projects. For this purpose, by installing various flow straighteners and rectifying structures inside the water supply system and the rectifying tank, the flow in the flume was stabilized as tranquil as possible. In addition, the measuring instruments and the location of installing them were carefully determined so as to minimize the errors intervened during the measurement of water discharge and water level. The method of estimating head difference between upstream and downstream of the sluice was also developed by taking account of the head loss due to the friction at the bottom and side walls in the flume.

Comparative study on cleaning effects of air scouring and unidirectional flushing considering water flow direction of water pipes (상수도관의 물 흐름 방향을 고려한 공기주입 세척 및 단방향 플러싱 공법의 세척 효과 비교 연구)

  • Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.353-366
    • /
    • 2019
  • This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.