• 제목/요약/키워드: Flow induced noise

검색결과 271건 처리시간 0.02초

평판 난류경계층에서의 벽 압력섭동에 대한 실험적 연구 (Experimental Study on Wall Pressure Fluctuations in the Turbulent Boundary Layer on a Flat-Plate)

  • 이승배;김휘중
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.722-733
    • /
    • 1999
  • The wall pressure fluctuations of a turbulent boundary layer over a flat plate have been investigated in an anechoic wind tunnel facility. The anechoic wind tunnel consists of acoustically-lined duct, muffler, and splitter-type silencer for noise suppression and vanes for reducing head losses involved. To improve spectra characteristics in high frequency range, a 1/8" pressure-type microphone sensor, which has a pin-holed cap of various diameters, was employed in this experiment. It was shown that the pin-holed microphone sensor with a dimensionless diameter $d^+$ of 7.1 resolved the high frequency pressure fluctuations most effectively among ones with various pin-hole diameters. The measured wall pressure spectra in terms of three types of scaling parameters were in good agreement with other experimental and numerical results. The pressure events of high amplitude were found to contribute to total fluctuating pressure energies in the turbulent boundary layer significantly and supposed to radiate to the far-field effectively.

이중냉각 연료봉의 단면치수와 스팬길이에 따른 진동특성해석 (Vibration Characteristic Analysis of a Duel-cooled Fuel Rod according to the Cross-sectional Dimensions and the Span Length)

  • 이강희;김재용;이영호;윤경호;김형규
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.819-825
    • /
    • 2007
  • Vibration characteristics of an duel-cooling cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • 제13권2호
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구 (Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X)

  • 이영빈;노주현;곽민호;이재호;김규홍;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF

Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석 (Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

발전소의 대형 주증기배관의 진동 특성 (The Vibration Characteristic of Large Main Steam Pipelines in Power Plant)

  • 김연환;이현
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.709-715
    • /
    • 1996
  • In recent years, the piping vibration in many Power Plants is being increased by the aged generating facilities due to a long time use. Generally, the pressure fluctuations associated with the flow-induced excitations in this case are broadband in nature. Mainly, the dominant sources of vibration are a vortex-shedding, plane waves and boundary layer turbulence. The peak level of the spectrum is proportional to the dynamic head. A severe disturbance in pipeline results in the generation of intense broadband internal sound waves which can propagate through the piping system. The characteristic frequencies of operating loads of 20%, 57%, 70%, 100% are 4 - 6 Hz and coincide with the results from impact hammering test and FEM analysis. We chose the wire energy absorbing rope restraint as a vibration reduction method after reviewing the various conditions such as site, installing space and economic cost etc. After installation, the vibration level was reduced about 54% in velocity.

  • PDF

선미변동압력 계측시험에서의 불확실성 해석 (Measurement Uncertainty Analysis for Fluctuating Hull Pressure)

  • 최군일
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.46-60
    • /
    • 1993
  • 캐비테이션 터널에서 변동압력의 정확한 계측은 실선에서의 진동과 소음세기 예측에 필요하다. 본문에서는 프로펠러 케비테이션에 의해 야기되는 변동압력의 실험적연구 결과를 나타내고 논의 한다. 문제시 되고 있는 프로펠러 회전수에 의한 영향을 이해하고자 변동압력을 캐비테이션 터널에서 평판을 이용하여 여러 회전수에서 계측 하였다. 균일류에서 오차를 추정하기 위하여 계측 및 계측결과에서의 불확실성 해석이 사용 되었다.

  • PDF

튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구 (A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model)

  • 김일곤;박진무
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

중성자 잡음해석에 의한 PWR 노심 운동상태 감시 (Neutron Noise Analysis for PWR Core Motion Monitoring)

  • Yun, Won-Young;Koh, Byung-Jun;Park, In-Yong;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.253-264
    • /
    • 1988
  • 본 논문에서는 불란서에서 건설한 900 MWe급 가압경수형 원자로의 중성자 잡음해석 결과를 제시하였다. 중성자 잡음해석이란 노심내의 반응도 변화 및 노심의 수평운동으로 인한 노외검출기 신호의 변화를 해석하는 기법을 의미한다 이러한 방법은 Deterministic Dynamic Testing 기법중에서도 발전소의 정상운전 조건을 유지시키며 기존의 발전소 계측설비를 이용할 수 있다는 장점을 지니고 있다. 본 논문에 사용된 잡음신호는 울진 1호기 원자로의 시운전 시험기간에 구하였으며 이를 통계적 기술함수인 에너지 밀도함수(PSD), 검출기간의 상관함수 (CF)및 위상차(Phase Difference)로 나타내었다. 실험결과, 원자로 용기내의 냉각수 흐름 및 압력맥동 등에 의해 유도되는 Core Support Barrel(CSB)의 진동 주파수가 8Hz 근처임을 규명하였다.

  • PDF

프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석 (Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve)

  • 박정우;하룬 아흐마드 칸;정은아;권성자;윤소남;이후승
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.