• Title/Summary/Keyword: Flow in centrifugal field

Search Result 104, Processing Time 0.024 seconds

Quantitative Visualization of Inlet Flow of the Centrifugal Blower (원심 블로어 입구 유동의 정량적 가시화 연구)

  • Jeong, Tae-Sik;Tu, Xin Cheng;Kim, Sung-Jun;Jang, Hwan-Young;Kim, Jin-Kwang;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • The inlet flow of centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower system is one of the key parts of EV battery cooling system, the quantitative information of flow field of centrifugal blower is important to design and optimize the cooling system. Two types of inlet parts were used in this study. One is the straight inlet and the other is a bended one. The results showed the flow asymmetry exists in the straight model due to the pressure difference in the blower. In case of the bended one, the separation bubble and the increase of head loss appeared compared with the straight model.

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape - (볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 -)

  • Jin, Hyun Bae;Kim, Myung Jin;Son, Chang Ho;Chung, Wui Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

Application of PIV in a Transonic Centrifugal Impeller

  • Hayami Hiroshi;Hojo Masahiro;Aramaki Shinichiro
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.1-5
    • /
    • 2001
  • A particle image velocimetry (PIV) was applied to a flow measurement in a transonic centrifugal impeller. A phase locked measurement technique every $20\%$ blade pitch enabled a reconstruction of a velocity field over one blade pitch. The measured velocity field at the inducer of impeller clearly showed a shock wave generated on the suction surface of a blade.

  • PDF

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

NUMERICAL STUDY OF NON-UNIFORM TIP CLEARANCE EFFECTS ON THE PERFORMANCE AND FLOW FIELD IN A CENTRIFUGAL COMPRESSOR (비균일 익단간극이 원심압축기의 성능과 유동에 미치는 영향에 대한 수치해석적 연구)

  • Jung, Y.H.;Park, J.Y.;Choi, M.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • This paper presents a numerical investigation of the influences of various non-uniform tip clearances on the performance and flow field in a centrifugal compressor. Numerical simulations were conducted for three centrifugal compressor impellers in which the tip clearance height varied linearly from the leading edge to the trailing edge. The numerical result was compared with the experimental data for validation. Although the performance improved for low tip clearances, a smaller tip clearance at the trailing edge reduced the overall tip leakage flow more effectively than a smaller tip clearance at the leading edge. Therefore, a smaller tip clearance at the trailing edge lowered the mixing loss caused by interactions between the tip leakage flow and the main passage flow.

Flow-field Analysis and Noise Prediction of Centrifugal Compressor (원심압축기 유동해석 및 소음예측에 관한 연구)

  • 선효성;신인환;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1005-1009
    • /
    • 2002
  • The objective of this research is to suggest the noise prediction method of the centrifugal compressor. It is focused on the Blade Passing Frequency (BPF) component which is regarded as the main part of the rotating impeller noise. Euler solver is used to simulate the flow-field of the centrifugal compressor and time-dependent pressure data are calculated to perform the near-field noise prediction by Ffowcs Williams-Hawkings (FW-H) formulation. Indirect Boundary Element Method (IBEM) is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and Sound Pressure Level (SPL) prediction results are compared with the experimental data.

  • PDF

Effects of Blade Back Sweep Angle on the Performance and Flow Field in a Centrifugal Compressor (블레이드 후향각이 원심압축기의 성능과 유동에 미치는 영향)

  • Jung, Yohan;Baek, Je Hyun;Park, Jun Young;Choi, Minsuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2013
  • This paper presents a numerical investigation of the influence of the blade back sweep angle on the performance and flow characteristics in a centrifugal compressor with a vaneless diffuser. Five impellers with different back sweep angles were tested in the flow simulations. It was found that a low back sweep angle could improve the total-to-total pressure ratio and the work coefficient over whole operating ranges. However, the flow field in an impeller with a low back sweep angle produced a more non-uniform velocity distribution at the impeller exit because the wake region was significantly increased. As a consequence, the impeller with a low back sweep angle caused a low diffuser performance.

Numerical Study on the Three-Dimensional Centrifugal Compressor Volute Flow (원심 압축기 벌류트 3차원 유동의 수치해석)

  • Yoon Ju-Sig;Park Ki-Cheol;Chang Keun-Shik;Bae Hwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.222-229
    • /
    • 2006
  • Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and $\kappa-\varepsilon$ equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid concept, which is good to avoid the central grid singularity as well as to promote grid stretching toward the volute wall. Numerical result has been obtained for both the two- and three- dimensions. For the latter flow, result of the scroll volute flow is compared with that of the straight conical volute. This comparison has sorted out the characteristic features of the three-dimensional scroll-type volute flow of centrifugal compressor.