• Title/Summary/Keyword: Flow friction loss

Search Result 186, Processing Time 0.022 seconds

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

NUMERICAL STUDY OF THE HIGH-SPEED BYPASS EFFECT ON THE AERO-THERMAL PERFORMANCE OF A PLATE-FIN TYPE HEAT EXCHANGER (평판-휜 열교환기의 열-수력학적 성능에 대한 고속 바이패스 영향의 수치적 연구)

  • Lee, Jun Seok;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • The high-speed bypass effect on the heat exchanger performance has been investigated numerically. The plate-fin type heat exchanger was modeled using two-dimensional porous approximation for the fin region. Governing equations of mass, momentum, and energy equations for compressible turbulent flow were solved using ideal-gas assumption for the air flow. Various bypass-channel height were considered for Mach numbers ranging 0.25-0.65. Due to the existence of the fin in the bypass channel, the main flow tends to turn into the core region of the channel, which results in the distorted velocity profile downstream of the fin region. The boundary layer thickness, displacement thickness, and the momentum thickness showed the variation of mass flow through the fin region. The mass flow variation along the fin region was also shown for various bypass heights and Mach numbers. The volumetric entropy generation was used to assess the loss mechanism inside the bypass duct and the fin region. Finally, the correlations of the friction factor and the Colburn j-factor are summarized.

Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin (개량 루버핀에 의한 열전달 성능향상에 관한 연구)

  • Chung, Jae-Dong;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Theoretical Analysis of Lubrication for the Hermetic Scroll Compressor with Back-Pressure Chamber (배압실을 갖는 밀폐형 스크롤 압축기의 윤활 특성에 관한 이론적 해석)

  • 심현해;김광호;이홍원;소순갑
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1994
  • Oil flow pass of hermetic scroll compressor with back pressure chamber was described. Dynamic analysis was preceded in order to obtain the loads on the lubricating contacts. The mobility method of dynamically loaded journal bearings was applied to the crank jornal bearing and lower main bearing, and they could be designed to operate under fluid film lubrication. From the consideration of their film thicknesses and oil flow rates, optimal bearing clearances or other bearing dimensions could be assessed. The major friction loss was calculated to be from the axial force between the two scrolls. Therefore, it was suggested that the designers should be careful to reduce the over-turning moment on the orbiting scroll.

Turbulent Flow in an Axially Finned Rod Bundle with Spacer Grids

  • Chung, H.J.;Cho, S.;Chun, S.Y.;Yang, S.K.;Chung, M.K.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.328-341
    • /
    • 1998
  • This paper presents in detail the hydraulic characteristic measurements using LDV(Laser Doppler Velocimetry) in subchannels of a HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids and has a cylindrical configuration. Axial velocity and turbulent intensity were measured. The effects of the spacer grids on the turbulent flow were investigated using the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of the fuel bundle and the loss coefficients for the spacer grids were estimated from the measured pressure drops. The turbulent thermal mixing phenomena were discussed.

  • PDF

Optimization of supersonic ejector (2차 노즐목을 갖는 초음속 이젝터의 최적화)

  • Park, Hyung-Ju;Yoon, Shi-Kyung;Yeom, Hyo-Won;Sung, Hon-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.130-134
    • /
    • 2010
  • The effects of design parameters of supersonic ejector system under the assumption of constant pressure mixing were performed. Design parameters were mass flow rate ratio, area ratio between primary and secondary flow, and primary Mach number. 1-D theoretical performance of ejector in terms of pressure ratio and contraction ratio with and without loss mechanism such as diffuser efficiency and friction were considered.

  • PDF

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

Investigation on helix type labyrinth seal to minimize leakage flow of cryogen for rotating superconducting machines

  • Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.