• Title/Summary/Keyword: Flow friction loss

Search Result 186, Processing Time 0.021 seconds

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices (압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰)

  • Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.

An experimental study on the heat transfer characteristics in packed bed (충전층내에서의 열전달특성에 관한 실험적 연구)

  • 신현준;양한주;오수철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.40-47
    • /
    • 1982
  • Heat transfer on packed bed is considered to be important for the effective designs of chemical reaction equipment, air conditioning system, and storage type heat exchanger, etc. Currently studies are being carried out quite actively in this field in order to increase the heat transfer efficiency. The effect of heat transfer is closely relater to materials, shapes, porosities and packing states of packed bed as well as mutual dimensional relations between particles and the container. Investigation shows that heat transfer results appear to be influenced by such parameters as fluid velocity through packed bed, mass flow, and thermal properties. It is noted that viscosity is also considered to be an important factor in this problem. In this study, effective thermal conductivities on packed bed, effects of thermal conductivity (Ke) and friction factor (Fk) according to change of porosity(.epsilon.) and Reynolds number(Reh(, and pressure loss of the fluid, are experimentally investigated. Results show that the effective thermal conductivity increases and the friction factor decreased, as against the increase of Reynolds number. But as the increase of porosity increase them both.

  • PDF

Pressure Loss and Forced Convective Heat Transfer in an Annulus Filled with Aluminum Foam (발포 알루미늄이 삽입된 환형관에서의 압력손실 및 강제대류 열전달)

  • Noh Joo-Suk;Lee Kye-Bock;Lee Chung-Gu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.855-862
    • /
    • 2005
  • An experimental investigation has been carried out for aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink for high performance forced water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kw/m^2$ and Reynolds number ranged from 120 to 2000. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while the significant augmentation in Nu is obtained. This technique can be used for the compactness of the heat exchanger.

Experimental Studies on Hydraulic Lifting of Solid-liquid Two-phase Flow

  • Park, Yong-Chan;Yoon, Chi-Ho;Lee, Dong-Kil;Kwon, Seok-Ki
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.647-653
    • /
    • 2004
  • Experimental studies with 4.3m and enlarged 30m in height have been conducted to investigate the flow characteristics of solid-liquid mixture in a lifting pipe and to acquire the design data for sea tests that will be performed in the future. From the results, it was observed that the more the discharged volume fraction and the solid diameter increase, the more the hydraulic gradient increases. Also, the more the diameter of the lifting pipe increases, the smaller the friction loss, and consequently, the less pressure drop and hydraulic gradient. From the enlarged hydraulic pumping experiments, it was shown that the results of the experiments were matched with those of the numerical model previously developed. On the bases of these studies, we plan to conduct further experiments and validate the hydraulic pumping model.

Injector Discharge Characteristics of Liquid Rocket Engine (액체 로켓엔진의 분사기 유출 특성)

  • 조원국;류철성;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.12-19
    • /
    • 2001
  • The discharge characteristics of the oxidizer injector of liquid rocket engine were investigated. The discharge performance was obtained numerically which agreed quantitatively with the measured data. The discharge coefficient is proportional to the cavitation number for cavitating flow and constant for non-cavitating flow. The Reynolds number, however, affects little the discharge coefficient. The discharge coefficient decreased slightly as the Reynolds number increased because the friction loss decreased relatively at high Reynolds number flow.

  • PDF

A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine (1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석)

  • Hwang, Dong-Ha;Jung, Yo-Han;Baek, Je-Hyun;Rhee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Tip clearance is a critical point in turbine to reduce friction between blade and casing. To estimate the direct effectiveness of the tip clearance, numerically analyzed are flow passing through rotors with and without tip clearance. The Results by CFX tells that rotors with tip clearance have vortex structure which makes larger loss in turbine, and shows lower total-to-total efficiency than that without tip clearance.

  • PDF

Augmented heat transfer in a rectangular duct with angled ribs (사각 덕트내 요철의 각도 변화에 따른 열전달 특성)

  • U, Seong-Je;Kim, Wan-Sik;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

Liquid Flow and Pressure Drop of an Outside Flow Membrane Oxygenator with Hollow Fibers (외부흐름 중공사 막형 인공폐의 액체흐름과 압력손실)

  • 이삼철;김기범
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • The purpose of this study was to evacuate the effects of the number of tied hollow fibers in a novel membrane oxygenator that satisfied the limiting factor of minimizing the friction loss in the intravascular blood flow Pattern. The membrane oxygenator is a bundle consisted of several hundred ho1low fibers haying the outside diameter of 380 $\mu m$ and the axial jacket length of 600 mm. The eight different variation of tied hollow fibers in a bundle were designed. and the liquid flow pattern was controlled by a pump. The liquid pressure drop was measured by in vitro experiments using water and g1ycero1. Uniform blood flow pattern was observed for each number of tied hollow fibers. Pressure drop was 13-16 mmHg outside of the membrane oxygenator consisting of up to 700 ho1low fibers. More effective contact of liquid with the tied ho1low fibers was observed as a decrease in the number of the tied hollow fibers. and resulted in the enhancement of the friction tractor

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.