• Title/Summary/Keyword: Flow force

Search Result 2,355, Processing Time 0.035 seconds

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

FLOW PAST A RECTANGULAR CYLINDER (사각 실린더를 지나는 층류 유동특성)

  • Park, Doohyun;Yang, Kyung-Soo;Ahn, Hyungsu
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • This study performed numerical simulation to elucidate the characteristics of flow past a rectangular cylinder with various values of the aspect ratio(AR) of the cylinder. We calculated the flow field, force coefficients and Strouhal number of vortex shedding depending on the Reynolds number(Re) and the aspect ratio. The $AR{\approx}1$ is preferred for drag reduction, and 0.375$AR{\approx}0$ is recommended if suppression of the lift-coefficient fluctuation and the shedding frequency is desirable. Furthermore the criticality of the Hopf bifurcation is also reported for each AR.

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

Turbulent boundary layer control via electro-magnetic forces (전자기력을 이용한 난류경계층 제어)

  • Lee J.-H.;Sung H, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.166-171
    • /
    • 2004
  • Direct numerical simulations are peformed to investigate the physics of a spatially developing turbulent boundary layer flow suddenly subjected to spanwise oscillating electro-magnetic forces in the near-wall region. The Reynolds number based on the inlet momentum thickness and free-stream velocity is $Re_\theta=300$. A fully-implicit fractional step method is employed to simulate the flow. The mean flow properties and the Reynolds stresses are obtained to analyze the near-wall turbulent structure. It is found that skin-friction and turbulent kinetic energy can be reduced by the electro-magnetic forces. Instantaneous flow visualization techniques are used to observe the response of streamwise vortices to spanwise oscillating forces. The near-wall vortical structures are clearly affected by spanwise oscillating electro-magnetic forces.

  • PDF

NUMERICAL ANALYSIS OF FLOW AROUND RECTANGULAR CYLINDERS WITH VARIOUS SIDE RATIOS

  • Rokugou Akira;Okajima Atsushi;Gutierrez Isaac
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0, was carried out for Reynolds number of 10³ by using a multi-directional finite difference method on a regular-arranged multi-grid. The predicted results are in good agreement with the experimental data. It is found that fluid dynamic characteristics of rectangular cylinders alternate between the high-pressure mode and the low-pressure mode of the base pressure for D/H=0.2-0.6. We show that this phenomenon is induced by the change of the flow pattern around rectangular cylinders.

Characteristics for Fluid Flow in Circulating Fluidized Heat Exchanger (순환유동층 열교환기의 유동특성)

  • 이병창;안수환;김원철;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1291-1297
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the feeling increases the pressure loss and degrades the thermal performance of a heat exchanger An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Flowfield Calculation for Ship's Propulsion Mechanism of Two-Stage Weis-Fogy Type (2단식 Weis-Foghg형 선박 추진기구의 유동장 특성계산)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.371-380
    • /
    • 1998
  • The flow patterns and dynamic properties of ship's propulsion mechanism of two-stage Weis-Fogh type are studied by the discrete vortex method. In order to study the effects of the interaction of the two wings two cases of the phase differences of the wing's motion are considered the same phase and the reverse phase. The flow patterns by simulations correspond to the photographs obtained by flow visualization and flowfield of the propulsion mechanism which is unsteady and complex is clearly visualized by numerical simulations. The time histories of the thrust an the drag coefficients on the wings are also calculated and the effects of the interaction of the two wings are numerically clarified.

  • PDF

A Study on the Impronement on the Response of Solenoid-Flow control type ABS Modulator (솔레이노-유량제어 방식 ABS의 응답성 향상에 관한 연구)

  • 송창섭;김형태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.569-572
    • /
    • 1995
  • In this study, a hydraulic modulator of solenoid-flow type ABS, the master sylinder, and the wheel cylinder are modeled and simulated for increasing pressure characteristics of the brake. Response can be predicted by external force of the the master sylinder and pulses to the solenoid valve as input. For a demonstration of simulation result, experiment is done under the same condition as simulation condition after experimental apparatus of 1/4 car model is constructed. When factors of flow control valve are changed, the effect of each factor to response, how to improve response, and the most critical factors are considered from simulated result of time constant.

  • PDF

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.331-338
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

  • PDF

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.