• 제목/요약/키워드: Flow energy loss

검색결과 510건 처리시간 0.026초

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석 (Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center)

  • 양성준;김영주;허준;김태성
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

동일 평면상에서 연성된 직사각형 평판의 진동파워흐름해석 (Vibration Power Flow Analysis of Coupled Co-planar Rectangular Plates)

  • 박도현;홍석윤;길현권
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1053-1061
    • /
    • 1998
  • In this paper. the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates. the wave transmission approach is Introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors. we have obtained the reliable PFA results. and compared them with the analytical exact solutions.

  • PDF

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

SEA를 이용한 차량 진동 특성 해석 (Analysis of Vehicle Vibration Characteristics Using SEA)

  • 채장범;김태환
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.674-679
    • /
    • 2005
  • Statistical Energy Analysis(SEA) has been considered as a Possible method for predicting responses of complex structures, especially at higher frequencies. In this paper, an SEA model of a vehicle was built using 138 energy storing subsystems connected together using 1019 Junctions. SEAM software program was used to build and calculate the model. To demonstrate the accuracy of the SEA model, predicted response levels were compared with measured levels. The source Input levels were measured at the engine mounting parts. There is good agreement between the estimated and the experimental results. This paper also identifies some dominant energy flow paths from sources. It is finally presented that the SEA model can optimize the design parameters of vehicles using model parameters and energy flow paths.

초단열 슈퍼윈도우의 단열성능 실측과 시뮬레이션 비교 분석 (A Comparative strudy on the Insulation Performance of the Super Window by Actual Survey and Simulation)

  • 장철용;김치훈;안병립;홍원화
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.231-235
    • /
    • 2009
  • According to flow of energy, the loss occurs through walls, roofs, windows and so on. Among these case, most of the loss that is about 45% occurs through windows. windows's U-value is six times higher than wall's one according to Building code, so the loss through windows accounts for very much rates. Currently, Exterior wall's U-value about building envelope is 0.35~0.58W/ mK, but windows's one is 3.3W/ mK. It means that the loss through windows occupy very much amounts relatively. Therefore, the solution is required to reduce energy loss and increasing displeasure caused by excessive influx of solar energy through windows, to solve the problems Like decoloration on indoor furniture an clothes by harmful ultraviolet rays, air conditioning and increased cost. Therefore, on this paper, Thermal Performance was evaluated through actual test about high insulation Super Window which can improve thermal performance and the Simulation result was compared with actual resul by using Simulation program WINDOW and THERM.

  • PDF

유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발 (Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow)

  • 조준범;김정수;윤세의
    • 한국수자원학회논문집
    • /
    • 제50권12호
    • /
    • pp.877-887
    • /
    • 2017
  • 도시유역의 중 하류부에 주로 설치되는 4방향 합류맨홀에서 과부하 흐름에 의한 에너지 손실은 도심지 침수피해를 가중시키는 주요 원인이다. 과부하 4방향 합류맨홀에는 유입관의 유입조건에 따라 흐름 양상이 크게 변화되며, 중간맨홀 뿐만 아니라 3방향(T형) 합류맨홀의 흐름조건을 구성한다. 그러므로 유입관의 유입유량 변화에 따른 과부하 4방향 합류맨홀의 에너지 손실 변화 분석 및 손실계수 산정이 필요하다. 본 연구에서는 하수도시설기준을 준용하여 맨홀직경 및 관경을 1/5로 축소 한 수리실험 장치를 제작하였다. 과부하 사각형 4방향 합류맨홀에서 유입관의 유입유량비 변화에 따른 손실계수를 산정하기 위하여 유입관(주 유입관 및 양측면 유입관)의 유입유량비를 10% 간격으로 변화시켜 다양한 유량조건(40 case)을 선정하였다. 실험 결과 중간맨홀에서 0.40의 가장 낮은 손실계수가, $90^{\circ}$ 접합맨홀에서 1.58의 가장 높은 손실계수가 산정되었다. 또한 합류맨홀(T형, 4방향)의 경우 측면 유입유량이 한쪽으로 편향될수록 보다 큰 손실계수를 나타냈다. 유입관의 유입유량 조건 변화에 따른 손실계수를 산정하여 손실계수 범위도를 작도하였으며, 과부하 사각형 4방향 합류맨홀에서 모든 흐름조건을 고려할 수 있는 손실계수 산정식을 제시하였다. 제시된 산정식은 유입관의 유입유량이 변화하는 배수시스템의 설계 및 검증에 적용이 가능할 것으로 판단된다.

유동특성을 고려한 CNG 충전 노즐의 최적 설계에 관한 연구 (A Study on Optimal Design of CNG Charging Nozzle Considering Flow Characteristics)

  • 곽기명;백진욱;김남용;조용민;류성기
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.15-21
    • /
    • 2022
  • This study considered the internal flow considering the internal shape of the CNG filling nozzle, which is widely distributed in Korea. The CNG filling nozzle is the last part to pass through in the CNG filling process and has a significant influence on the filling efficiency. The mechanism was identified by disassembling the CNG filling nozzle and performing a flow analysis according to the mechanism. Consequently, the energy loss owing to eddy currents in the flow was determined, and modeling was proposed to reduce the energy loss by simplifying the shape and parts.

에너지흐름해석법을 이용한 중고주파수 대역 자동차 도어 진동예측 (Prediction of Vibrational Responses of Automotive Door System Using Energy Flow Analysis in Medium-to-high Frequencies)

  • 박영호;홍석윤;길현권
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1097-1102
    • /
    • 2010
  • In this paper, the energy flow analysis(EFA) of the body-in-white door of a real automotive was performed using the energy flow finite element method(EFFEM) to effectively predict the vibrational responses of built-up structures in the medium to high frequency range. To increase the validity of EFA results, the structural hysteresis damping loss factor was measured by the experiment using the concept of statistical energy analysis(SEA). As the excitation frequency increases, the predicted results simulated with EFFEM generally agree with the experimental results.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.