• 제목/요약/키워드: Flow distributions

검색결과 1,536건 처리시간 0.033초

항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 2 - 공기 유량 배분 (Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 2 - Air Flow Distribution)

  • 김대식;유경원;황기영;민성기
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.61-67
    • /
    • 2013
  • This study introduces the design methods for air flow distribution at the level of preliminary design, and reviews the typical combustion process and main functions of sub-components of aircraft gas turbine combustors. There are lots of design approaches and empirical equations introduced for air flow distributions at the combustors. It is shown that a decision on which design approaches work for the combustor development is totally dependent upon the objective of engine design, target performance, and so on. The current results suggested for preliminary air flow distributions need to be validated by combustor geometry checkups and performance evaluations for future works.

열성층유동 곡관벽에서의 과도온도분포 예측 (Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow)

  • 조종철;조상진;김윤일;박주엽;김상재;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

가진 펌프에 연결된 곡관덕트에서 난류진동유동의 전단응력분포와 압력분포 (Wall Shear Stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Curved Duct)

  • 손현철;이홍구;이행남;박길문
    • 한국유체기계학회 논문집
    • /
    • 제4권4호
    • /
    • pp.37-42
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in an oscillator connected to square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to investigate wall shear stress and pressure distributions, the experimental studies for air flows we conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisitions and the processing system. The wall shear stress at bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) by $10^{\circ}$ intervals of the duct are measured. The results obtained from the experiment are summarized as follows : wall shear stress values in the inner wall we larger than those in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성 (Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems)

  • 박상원;이상우
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

PIV를 이용한 만곡형 전개판의 유동장 계측에 관한 연구 (Study on the Measurements of Flow Field around Cambered Otter Board Using Particle Image Velocimetry)

  • 박경현;이주희;현범수;노영학;배재현
    • 수산해양기술연구
    • /
    • 제38권1호
    • /
    • pp.43-57
    • /
    • 2002
  • 본 연구는 고성능 전개판을 개발하기 위하여 전개판 주변의 유동장을 계측할 수 있는 해석 방법을 제시하고자 하였다. 실험 방법으로는 CFD를 이용한 유동장의 수치 해석과 유동장의 정량적, 정성적 계측이 가능한 PIV 실험방법을 사용하였다. 본 실험에서는 전개판 주변의 가시화된 영상을 PIV 기법을 이용한 화상처리로 유동특성을 해석하였으며, 이 결과를 CFD에 의한 해석 결과와 유동 패턴을 비교하였다. 또한, 회류 수조에서의 양력 계수 및 항력계수의 계측 결과를 상호 비교 하였다. 그 결과, 수치 해석된 결과와 PIV의 실험 결과는 정성적으로 매우 잘 일치하였으며, 물리적으로 타당성을 확인할 수 있었다. 그 결과는 다음과 같다. (1) 전개판의 유동장 분석을 위하여 레이저 광원을 이용한 가시화 실험을 실시하고, PIV 기법으로 화상분석을 실시하였으며, 유동입자의 흐름으로도 충분한 정성적인 유체운동의 경향을 파악할 수 있었다 (2) PIV해석결과가 정량적인 결과이므로 이를 다양한 후처리 방법을 통해 속도벡터장, 순간 유동장, 평균 와도로 나타내어 유동장의 변화를 확인할 수 있었다. (3) 최대전개력계수가 나타난 영각 24$^{\circ}$에서 비교한 CFD와 PIV 해석 결과, 유동 패턴은 유사하였고, 두 경우 모두 전개판 후연에서 약간의 경계층 박리가 발생하였으나 양호한 흐름을 보였다. (4) PIV에 의한 속도 벡터도, 순간 유선도, 평균 와도로 후처리한 결과, 영각 24$^{\circ}$에서부터 경계층 박리 현상이 일어나기 시작하여, 영각 28$^{\circ}$이상이 되면 심하게 전연으로 발생지점이 이동하게 되고, 그 폭도 확대됨을 확인할 수 있었다.

망간단괴 집광기 주위 해수 유동교란 수치해석 (Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device)

  • 임성진;채용배;정신택;조홍연;이상호
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

엇갈린 배열의 돌출물들이 존재하는 마이크로채널 내의 스톡스 유동 (STOKES FLOW THROUGH A MICROCHANNEL WITH PROTUBERANCES OF STAGGERED ARRANGEMENT)

  • 손정수;정재택
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.109-115
    • /
    • 2015
  • In this study, the Stokes flow in the microchannel is analysed where the semicircular protuberances with constant spacing are attached on the upper and lower walls with staggered arrangement. For the low Reynolds number flow in microchannel, Stokes approximation is used and the periodicity and symmetry of the flow are considered to determine the stream function and pressure distribution in the flow field by using the method of least squared error. As results, the streamline patterns and pressure distributions in the flow field are shown for some specific values of the size and spacing of the protuberances, and shear stress distributions on the surface of semicircular protuberances are plotted. Especially, for an important physical property, the average pressure gradient along the microchannel is obtained and compared with that for the case of in-phase arrangement of the upper and lower protuberances. And, for the small clearance between the protuberances of upper and lower walls or between the protuberances and the opposite wall, the average pressure gradient is derived from the lubrication theory and compared with that of the present study.

수소 저장 탱크용 고압 밸브의 개도율에 따른 열·유동 특성 분석 (Analysis of Thermal Flow Characteristics according to the Opening Ratio of High-Pressure Valve for Hydrogen Storage Tank)

  • 정다운;최진;서현규
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.525-533
    • /
    • 2022
  • In this study, in order to numerically analyze the heat flow characteristics in the valve according to the opening rate for the solenoid valve for hydrogen supply applied to the hydrogen storage tank, flow characteristics were comparatively analyzed. Through the analysis of pressure and temperature distributions within the valve according to the high-pressure supply condition of 70 MPa or more, the heat flow characteristics in the valve, inlet and outlet passage according to the opening rate of the valve were identified. As a result a sudden change in the fluid behavior appears in the neck region of the valve, and it is understood that the flow separation caused by the flow path shape of the expanded tube has a dominant influence on the flow characteristics. And, it was confirmed that the shape of the valve seat is a factor significantly affecting the improvement of flow rate and differential pressure performance.

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

사각 덕트내 요철의 각도 변화에 따른 열전달 특성 (Augmented heat transfer in a rectangular duct with angled ribs)

  • 우성제;김완식;조형희
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.