• 제목/요약/키워드: Flow direction

검색결과 2,636건 처리시간 0.031초

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.337-339
    • /
    • 2008
  • Abstract: As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

무한 유향 알고리듬과 Horn 경사 알고리듬이 TOPMODEL 지형지수와 수문반응에 미치는 영향 (The Influence of the Infinitive Flow Direction Algorithm and Horn Slope Algorithm on the Topographic Index and Hydrological Responses of the TOPMODEL)

  • 변종민;김종욱
    • 대한지리학회지
    • /
    • 제44권3호
    • /
    • pp.207-223
    • /
    • 2009
  • 토양수분의 공간적인 분포를 예측하는 TOPMODEL 지형지수는 지형특성을 기반으로 하는 분포형 환경연구에서 빈번히 활용되는 지형 인자이다. 지형지수에 대한 평가 및 개선은 최근까지도 활발하지만, 대부분은 수정된 다중 유향 알고리듬을 이용한 것들이고, 경사 알고리듬을 이용한 경우는 상대적으로 미흡하다. 본 연구에서는 무한 유향(Dinf) 알고리듬과 Horn 경사 알고리듬을 이용하여 지형지수를 개선하고, 이를 TOPMODEL에 적용하여 모의 수문반응에 대한 영향을 분석하고 평가했다. 연구결과 무한 유향(Dinf) 알고리듬과 Horn 경사 알고리듬을 이용할 경우, 기존 다중 유향(MD8) - 다중 경사(MDS) 알고리듬에 비해 토양수분의 공간적 분포에 보다 근접한 지형지수를 만들 수 있었다. 그러나 최종 유출구의 유출량 모의 효율은 향상되지 않았다. 이 결과는 분포형 환경연구 분야에서 적절한 유향 및 경사 알고리듬을 선택하는데 도움이 될 것이다.

고속푸리에변환을 이용한 시공간 체적 표면유속 산정 기법 개발 (Calculation of surface image velocity fields by analyzing spatio-temporal volumes with the fast Fourier transform)

  • 류권규;유병호
    • 한국수자원학회논문집
    • /
    • 제54권11호
    • /
    • pp.933-942
    • /
    • 2021
  • 홍수시 하천의 유속을 효율적이고 안전하게 측정할 수 있는 방법의 하나로 제시된 것이 표면 영상유속측정법이다. 표면영상유속측정법에는 영상분석 기법에 따라 다양한 종류가 있으나, 이 중에서도 최근 일정시간 동안의 유속의 시간평균을 한 번에 산정할 수 있는 시공간영상 유속계측법이 하천의 표면유속 측정에 대한 연구가 활발히 진행되고 있다. 시공간영상 유속계측법은 일정 시간 동안의 시공간 영상을 한 번에 분석하기 때문에, 유속산정 시간을 획기적으로 줄일 수 있는 장점이 있다. 그러나 시공간영상 유속계측법은 주흐름방향을 정확히 알지 못하면 오차를 유발할 수 있다. 본 연구는 표면영상을 시간적으로 누적한 시공간체적을 구성하고, 이 시공간체적에서 시간축 방향으로 최대값 영상을 만든 뒤 이를 고속푸리에변환하여 주흐름방향을 탐색하는 새로운 기법을 제안하였다. 이 방법은 공간영상에서 주흐름방향을 찾는 첫단계와 주흐름방향의 시공간영상에서 유속의 크기를 산정하는 두번째 단계로 구성되어 있다. 첫번째 단계에서 찾아낸 주흐름방향으로 시공간영상을 작성하고, 이 시공간영상의 고속푸리에변환을 이용하여 유속을 산정하였다. 제안된 방법은 주흐름방향을 정확하게 추정하여 시공간영상을 생성하고 분석하므로, 기존 방법들이 취약했던 이차원 흐름에 대해서도 신속하고 정확한 유속분석이 가능하다. 개발된 방법을 공동흐름에 대한 인공영상에 적용한 결과 비교적 정확하게 2차원 유속분포 측정이 가능한 것으로 나타났다.

NUMERICAL STUDY OF THE FORMATION OF LINEAR DUNES

  • Zhang Ruyan;Kan Makiko;Kawamura Tetuya
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.31-38
    • /
    • 2005
  • Three-dimensional flow over the sand dunes have been studied numerically by using Large-Eddy Simulation (LES) method. In the direction of initial flow and span direction cyclic boundary conditions are imposed for velocity and pressure. The movement of the sand dune which is formed by converging wind direction has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow over the sand dune using standard MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)-(iii) are repeated. The simulated dune, which has initially elliptic cross section, extends at the converging direction, which is known as linear dunes.

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

촉매 변환기 내부 유동의 실험적 해석 (Experimental Analysis on the Catalytic Converter Internal Flow)

  • 유성출
    • 한국가시화정보학회지
    • /
    • 제10권2호
    • /
    • pp.20-24
    • /
    • 2012
  • Increasing the active catalyst surface area is important in improving a converter's efficiency. In addition, uniform flow is advantageous in that it produces more efficient catalytic conversion. This results in the ability to use a smaller catalytic converter with uniform flow as opposed to a larger converter requirement for non-uniform flow. Therefore, it is important to characterize the internal flow of the catalytic converter. To characterize the system's flow patterns, velocity measurements were taken at the mid and exit planes of a ceramic honeycomb catalytic converter at flow rates of 37.8 l/s and 94.4 l/s. Measurements were conducted using LDV. The profiles were measured along both the major and minor axis of the planes. Primary flow direction velocities measured along the minor axis, at both flow rates, varied greatly at the mid plane and somewhat at the exit plane. The areas of greatest air flow were seen near the edges of the walls and on the side of the converter opposite the flow's entrance region. It also appears that the high velocities opposite the intake are due to the design of the entrance region. The entrance region is possibly too small to properly redirect the vertically entering fluid into an evenly distributed flow in the primary flow direction.

조류 흐름을 고려한 해양지반 수리저항성능 실험기 개발 (Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow)

  • 강경오;정현철;김영상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1366-1369
    • /
    • 2010
  • Along with the increasing need of sea development, the hydraulic stability of seabed structure on a soft seafloor ground is becoming an issue in the course of seaside development recently. However, the movement and hydraulic resistance or hydraulic stability of seafloor ground are mutually coupled with various phenomena, and there has been no clear proof for the issue, which makes it difficult to forecast. Furthermore, most researches are focused on hydraulic variables and the conditions of marine external force, while there have been few researches into the assessment in consideration of the type of a seafloor ground and the geotechnical characteristics. In addition, according to the periodic change of the flow direction, possible changes in hydraulic resistance performance of the seafloor deserves all the recognition. But there is no way to measure the hydraulic unstability of the sea ground due to tidal flow quantitatively. In this study, conventional hydraulic resistance measurement apparatus was improved to consider direction change of the current flow. Various artificial clayey soil specimens were made from Kaolinite and Jumunjin standard sand and hydraulic resistance tests were performed by changing the flow direction to validate the effect of the direction change on the scour of the seafloor.

  • PDF

혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구 (A Study on the Development of CW(Continuous-Wave)Doppler System for measuring Bi-directional Blood Flow Information)

  • 강충신;김영길
    • 대한의용생체공학회:의공학회지
    • /
    • 제8권1호
    • /
    • pp.75-80
    • /
    • 1987
  • With the conventional CW Doppler velocity meter, bl-directional velocities cannot be separated. The new CW Doppler system uses quadrature detection and phase rotation to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, we can easily differentiate typical artery flow from vein flow, and measure both velocity characteristics qualitatively.

  • PDF

광음향 변조효과를 이용한 유체의 방향 결정 (Determination of Flow Direction by Using an Acousto-Optic Effect)

  • 김규욱
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.34-36
    • /
    • 1990
  • The flow direction in a glass tube is measured by using a forward scatering dual beam laser Doppler velocimeter with an acousto-optic modulator. We can determine the flow direction by measuring the shifted Doppler frequency which is dependent on the order of modulation of the laser frequency shifting moves only the Doppler signal, enabling complete separation of the Pedestal and Doppler singal.

  • PDF