• Title/Summary/Keyword: Flow development

Search Result 6,289, Processing Time 0.039 seconds

Development of an Optical Probe for Measuring Blood Flow in Dental Pulp (치수혈류 측정을 위한 광 프로브 개발)

  • Jang, Kyung-Hwan;Choi, Joon-Yul;Koo, Jeong-Mo;Kwon, Min-Kyung;Kim, Deok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1204-1209
    • /
    • 2012
  • To diagnose dental pulp vitality, electric pulp tester has been widely used, which is a method to test condition of nerve. However, especially in the case of patients with trauma, nerve desensitization could temporarily occur even though nerve might be recovered by blood flow within the pulp later, which implies that blood flow in dental pulp is also an important factor for diagnosing vitality. This paper described the development of a probe that relatively measured blood flow in dental pulp using photoplethysmography (PPG). The probe emits four different wavelength light sources including three visible and an infrared light. We tested which light source detect sensitively the blood flow in dental pulp. As a result, green light had the largest peak to peak voltage and the power spectrum among different wavelengths.

Application of non-reacting and reacting flow simulation for combustor development (연소기 개발에서 시뮬레이션 기술의 활용)

  • Jung, Seungchai;Yang, Siwon;Kim, Shaun;Park, Heeho;Ahn, Chulju;Yoon, Samson
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.123-126
    • /
    • 2013
  • Combustor development requires high fidelity simulation capable of predicting recirculation zone (RZ), temperature field, and pollutant emission. Swirling flow is widely used in combustor for its benefits in efficient mixing and flame stabilization by RZ. Large eddy simulation (LES) is used to calculate swirling flow in an expanding pipe [1], and shows higher accuracy than RANS. Reactive flow modeling using LES and flamelet model is validated with experiments by Barlow et al. [4] and Masri et al. [3]. Finally, heat transfer simulation of Samsung Techwin's combustor liner is presented.

  • PDF

Development of Educational Simulator for Load Flow (교육용 전력조류계산 시뮬레이터 개발)

  • Kim, Hyun-Houng;Jeong, Yun-Won;Yang, Kwang-Min;Lee, Ki-Song;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.88-90
    • /
    • 2004
  • This paper presents the development method of educational simulator for the load flow. The developed simulator can be made the students to model, analysis of power systems by drawing the system and performing the load flow by themselves under window environment. For the effective education of load flow, we have introduced the avatar which is the object to explain the load flow to the students. Also, The simulator has developed by using the language based on XML(Extended Markabel Language). Therefore, we determine that this simulator is useful to educate the load flow and easily to expand the other application program.

  • PDF

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

An Outlook on Rotordynamic Pump Theory Development

  • Ni, Yongyan;Pan, Zhongyong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.99-118
    • /
    • 2017
  • ECHO progress was defined to depict the rotordynamic pump theory development. Experience (E) era for pumps lasted nearly one and a half hundred years before the Industrial Revolution due to the low rotation speed of motor and undeveloped manufacture ability. Classic (C) theory referring to quasi-static performance as well as the items those were not able to be steadily resolved under the level were briefly and sophisticated outlined. Since 1962, flow instabilities and the dynamic responses had come into main attention with the development of the modern technologies such as ballistic missile, rocket and space shuttle main engine, and were finally heuristically (H) elucidated by talented scholars and researchers. Recently, new applications for the pumps open (O) to the surrounding fluid and diversity of the medium such as multiphase flow need more studies and some examples were briefly introduced to display the potential problems lastly.

CURRENT STATUS OF THERMAL/HYDRAULIC FEASIBILITY PROJECT FOR REDUCED- MODERATION WATER REACTOR (2) - DEVELOPMENT OF TWO-PHASE FLOW SIMULATION CODE WITH ADVANCED INTERFACE TRACKING METHOD

  • Yoshida, Hiroyuki;Tamai, Hidesada;Ohnuki, Akira;Takase, Kazuyuki;Akimoto, Hajime
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2006
  • We start to develop a predictable technology for thermal-hydraulic performance of the RMWR core using an advanced numerical simulation technology. As a part of this technology development, we are developing the advanced interface tracking method to improve the conservation of volume of fluid. The present paper describes a part of the development of the twophase flow simulation code TPFIT with the advanced interface tracking method. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results of numerical simulation, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values obtained by the advanced neutron radiography technique including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.

Simulation of Neutral Flow around Plasma Actuator

  • Jung Suk-Young;Ahn Chang-Soo;Hong Seung-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.306-308
    • /
    • 2006
  • Numerical simulations were carried out of the effects of momentum and heat produced by a plasma actuator on neutral flow. Momentum and heat generated during plasma discharge were modeled as a body force and heat source using results of experiments and DSMC of particle. These force and heat model were inserted into a Navier-Stokes equation and the flow around the plasma actuator could be explored by solving fluid dynamics only. Fluid simulation showed that force produced in DSMC generated a jet flow in the vicinity of the plasma actuator and heat accounted for density change.

  • PDF

CFD Application to Development of Flow Mixing Vane in a Nuclear Fuel Assembly (핵연료다발 유동혼합 날개 개발을 위한 CFD 응용)

  • In, W.K.;Oh, D.S.;Chun, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.482-487
    • /
    • 2001
  • A CFD study was conducted to evaluate the nuclear fuel assembly coolant mixing that is promoted by the flow-mixing vanes on the grid spacer. Four mixing vanes (split vane, swirl vane, twisted vane, hybrid vane) were chosen in this study. A single subchannel of one grid span is modeled using the flow symmetry. The three mixing vanes other than swirl vane generate a large crossflow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The swirl vane induces a circular swirling flow in the subchannel and a negligible crossflow. The split vane and the twisted vane were predicted to result in relatively larger pressure drop across the grid spacer. Since the average turbulent kinetic energy in the subchannel rapidly decreases to a fully developed level downstream of the spacer, turbulent mixing caused by the mixing vanes appears to be not as effective as swirling flow mixing in the subchannel. In summary, the CFD analysis represented the overall characteristics of coolant mixing well in a nuclear fuel assembly with the flow mixing vanes on the grid spacer. The CFD study is therefore quite useful for the development of an advanced flow-mixing vane.

  • PDF

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Wind flow modification by a jet roof for mitigation of snow cornice formation

  • Kumar, Ganesh;Gairola, Ajay;Vaid, Aditya
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • The snow cornice mass on the formation zone had triggered avalanches which led to the loss of human life and property. Snow cornice is formed due to flow separation on the leeward side. Effect of lee slope is more prominent in the formation of snow cornices as compared to the windward slope. The analysis of wind flow pattern has been carried out to evaluate the performance of a jet roof. Computational Fluid Dynamics (CFD) analysis of wind flow over a 2D hill model was carried out using RNG based k-∈ turbulence models available in ANSYS Fluent. Effect of varying leeward hill slope (1:2 to 1:6) on flow separation for the given windward slope was observed and a critical slope of 1:4 was found at which the separation zone ceased to exist. The modification of wind flow over a hill due to the installation of jet roof was simulated. It was observed that jet roof had significantly modified the wind flow pattern around hill ridgeline and ultimately snow cornice formation had mitigated. The results of the wind flow pattern were validated with the wind data collected at the experimental site, Banihal Top (Jammu and Kashmir, India). The wind flow simulation over the hill and mitigation of cornice formation by the jet roof has been explained in the present paper.