• Title/Summary/Keyword: Flow controller

Search Result 709, Processing Time 0.022 seconds

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

Improvement of Responsivity of Unified Power Flow Controller in Digital Control System

  • Hamasaki, Shin-ichi;Miyazaki, Shinya;Takaki, Tsuyoshi;Tsuji, Mineo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.354-361
    • /
    • 2014
  • The Unified Power Flow Controller (UPFC) can flexibly manage power flow and maintain line voltage. The UPFC consists of two inverters in parallel side and series side. In parallel side, the reactive power can be compensated to improve the power factor. In series side, the voltage drop can be compensated to maintain proper line voltage. It is necessary for the operation in both sides to output the current and the voltage quickly and accurately. As the method for the UPFC control, the deadbeat control with state observer is applied. The deadbeat control is able to realize a quick response of the current and voltage control for only a sampling period compared with the general PI control. A principle and simulation results are presented in this paper.

Study on the connection admission controller using QoS measurement based neural network (QoS 측정 기반의 신경망을 이용한 연결 수락 제어기에 관한 연구)

  • 이영주;변재영;정석진;김영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.909-912
    • /
    • 1998
  • In this paper, a new connection admission controller using neural network is presented. The controller measures traffic flow, cell loss rate, and cell delay periodically. Using those measured information, it learns the distributions of traffics of each traffic. Also the proposed controller is able to measure and manage the delays that source traffics experience through the network by using DWRR multiplexer with buffers dedicated to each traffic source. Experimental result show that the heterogeneous traffic sources with various QoS requirement.

  • PDF

Immune Based 2-DOF PID Controller Design for Complex Process Control

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.2-70
    • /
    • 2002
  • In the thermal power plant, it is difficult to maintain strict control of the steam temperature in order to avoid thermal stress, because of variation of the heating value according to the fuel source, the time delay of changes in main steam temperature versus changes in fuel flow rate, difficulty of control on the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, fluctuation of inner fluid water and steam flow rates widely during load-following operation. Up to the present time, the PID controller has been used to operate this system...

  • PDF

Optimal Design and Development of Electromagnetic Linear Actuator for Mass Flow Controller

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we constructed the analytic model of control valve as a function of electric and geometric parameters, and analyzed the influence of the design parameters on the dynamic characteristics. For improving the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design aims to minimize the response time and maximize force efficiency. By this procedure, control valve can be designed to have fast response in motion.

A Study on Dynamic Test of Distance Relay for Transmission Line with the Unified Power Flow Controller Using the Real-Time Digital Simulator(RTDS) (UPFC가 연계된 선로에서 RTDS를 이용한 거리계전기의 동특성 시험에 관한 연구)

  • Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.223-225
    • /
    • 2001
  • This paper discusses the dynamic test of distance relay on transmission line connected unified power flow controller(UPFC) using the real-time digital simulator(RTDS). Depending on operating conditions of UPFC, the trip characteristics of distance relay is influenced by the prefault conditions. In this paper, UPFC is established using the RTDS and then relay test is performed on real time.

  • PDF

Flow Experience through PLC Practice (PLC실습을 통한 몰입경험)

  • Huh, Jun-Young
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • It is known that the ability and habit to "flow" could be one of the important indices to evaluate one's life. And the flow experience of university students who are in the important time transferring from the adolescence to the initial adult period will give an important effect firstly to study one's major and map out one's career path, finally to spread out the high quality life. This study investigated the university students who are in School of Mechatronic Engineering to experience the flow in the learning of PLC (Programmable Logic Controller) practice. For this, the flow condition was arranged. And in order to experience the flow in the learning of PLC, lecture plan was established, studying environment was changed and level of difficulty was controlled. Then the implications of the flow were explored by a 5-point Likert scale survey performed to 90 students.

Adaptive Sliding Mode Traffic Flow Control using a Deadzoned Parameter Adaptation Law for Ramp Metering and Speed Regulation

  • Jin, Xin;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2031-2042
    • /
    • 2017
  • In this paper, a novel traffic flow control method based-on ramp metering and speed regulation using an adaptive sliding mode control (ASMC) method along with a deadzoned parameter adaptation law is proposed at a stochastic macroscopic level traffic environment, where the influence of the density and speed disturbances is accounted for in the traffic dynamic equations. The goal of this paper is to design a local traffic flow controller using both ramp metering and speed regulation based on ASMC, in order to achieve the desired density and speed for the maintenance of the maximum mainline throughput against disturbances in practice. The proposed method is advantageous in that it can improve the traffic flow performance compared to the traditional methods using only ramp metering, even in the presence of ramp storage limitation and disturbances. Moreover, a prior knowledge of disturbance magnitude is not required in the process of designing the controller unlike the conventional sliding mode controller. A stability analysis is presented to show that the traffic system under the proposed traffic flow control method is guaranteed to be uniformly bounded and its ultimate bound can be adjusted to be sufficiently small in terms of deadzone. The validity of the proposed method is demonstrated under different traffic situations (i.e., different initial traffic status), in the sense that the proposed control method is capable of stabilizing traffic flow better than the previously well-known Asservissement Lineaire d'Entree Autoroutiere (ALINEA) strategy and also feedback linearization control (FLC) method.

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF