• Title/Summary/Keyword: Flow controller

Search Result 710, Processing Time 0.033 seconds

Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street (Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어)

  • 진선미;김성호;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.71-83
    • /
    • 2003
  • An arterial street control is performed for the purpose of the progression of a traffic flow using the arterial. However during the progression in the arterial, the change according to the time is one of the most representative problems occurring at a signal plan. This paper intends to efficiently operate the arterial progression by applying fuzzy logic, which is thought to be the most possible one in the inference as that of the human logic, to the traffic responsive control system. Fuzzy Logic controller is appliable to the daily human language (linguistic). can be dealt with the uncertain traffic data and is useful on planning the signal control to sensitively confront the randomly changing traffic condition. This study, based on the signal control part of the isolated intersection in "A Development of a Real-time, Traffic Adaptive Control Scheme Through VIDs"(Seong Ho. Kim. 1996). suggested the strategy for the progression control in the arterial and analyzed its effect by comparing the effect of the existing control method. In addition, the study compared each effect by using TRAF-NETSIM which is the traffic simulation software to analyze each control method.

The Development of the Climatic Design Tool for Energy Efficient Building Design (태양열 축열조가 없는 변유량 제어 방식의 지역난방용 태양열시스템 실증시험연구)

  • Baek, Nam-Choon;Shin, U-Chul;Lee, Jin-Kook;Yoon, Eung-Sang;Yoon, Suk-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.21-27
    • /
    • 2008
  • In this study, the design of the solar heating system for district heating as well as it's operating characteristics and the performance analysis was carried out. This solar district heating system was composed of two different types of solar collector circuit, flat plate and vacuum tube solar collector, in a system. This system supply constant temperature of hot water without solar buffer tank. For this, the proportional(variable flow rate) control was used. The experimental facility for this study was used the Bundang district solar heating system which was installed in the end of 2006. The operating characteristics and behaviour of each collector circuits are investigated especially for the system design and control. The yearly solar thermal efficiency is 47.5% on the basis of aperture area and 39.8% on the basis of gross area of collector. As a result this solar heating system without solar buffer tank and with proportional controller was testified a very effective and simplified system for district heating. It varied especially depend on the weather condition like as solar radiation and ambient temperature.

System Implementation for Fair Automatic Heating Operation Based on Spatial Distributing and Zonal Calorie Measuring (공간분활 및 영역열량측정에 의한 공평 자동난방운영시스템 구현)

  • Han, Sang Cheol;Ryu, Kwang Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.910-916
    • /
    • 2019
  • This paper describes the system implementation of the heating operation based on spatial distributing and zonal calorie measuring and analyzing of houses to calculate the fair amount of the heating meterage automatically. The heating space is distributed into 4 zones, which the flow rate and calories are checked by one meter respectively. The system is composed of a heating sources, adjuster of thermostat, valve controller, PC converter and total monitering. The returning temperature in the spatial zones is measured for the heating calorie to calculate the zonal calories according to the rooms temperature. The proposed system results in error by 1% or less in comparing with the dedicated experimental equipment, and reduces energy cost by 7% from conventional system. The fair checking system will be enhanced with building energy management system in the future.

Mitigating TCP Incast Issue in Cloud Data Centres using Software-Defined Networking (SDN): A Survey

  • Shah, Zawar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5179-5202
    • /
    • 2018
  • Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data centers today. However, cloud data centers using TCP experience many issues as TCP was designed based on the assumption that it would primarily be used in Wide Area Networks (WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This issue arises because of the many-to-one communication pattern that commonly exists in the modern cloud data centers. In many-to-one communication pattern, multiple senders simultaneously send data to a single receiver. This causes packet loss at the switch buffer which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). Recently, Software-Defined Networking (SDN) has been used by many researchers to mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to the Incast issue is carried out. In this survey, various SDN based solutions are classified into four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based solutions, Quick Recovery based solutions and Application Layer based solutions. All the solutions are critically evaluated in terms of their principles, advantages, and shortcomings. Another important feature of this survey is to compare various SDN based solutions with respect to different performance metrics e.g. maximum number of concurrent senders supported, calculation of delay at the controller etc. These performance metrics are important for deployment of any SDN based solution in modern cloud data centers. In addition, future research directions are also discussed in this survey that can be explored to design and develop better SDN based solutions to the Incast issue.

The Verification Test of Launch Control System Algorithms Using Automated Verification System (자동화 검증시스템을 이용한 발사관제시스템 알고리즘 검증시험)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.127-137
    • /
    • 2021
  • The launch complex(LC) is composed of various facilities. The launch control system that operates remotely those of LC spends much time and labor for developing and verifying its control algorithms. The verification of algorithms is performed by the software developer entering simulated state values based on the test procedure and checking the output result according to the algorithm flow. These verification processes should be performed repeatedly, thus the human errors are easily occurred. In this paper, an efficient automated verification method with a script test procedure is proposed to minimize human errors and shorten the verification duration. We also present the results of the algorithm verification tests for the cases of the compressed gases supply system and the electro pneumatic panel system of LC.

Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control (항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가)

  • Han, Myeongjae;Seol, Jinwoon;Jeong, Seungho;Cha, Minkyung;Jang, Hoyoun;Kim, Junghoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2022
  • A vacuum brazed cooling passage for an aircraft engine controller was designed. In order to predict the total pressure loss, which is the main design factor of the cooling passage, theoretical and numerical methods for the major loss and the minor loss considering the overall shape of the cooling passage are presented. This design and evaluation method can predict the pressure loss of the complex cooling passage shape for various flow conditions at the initial design step.

A Blockchain-enabled Multi-domain DDoS Collaborative Defense Mechanism

  • Huifen Feng;Ying Liu;Xincheng Yan;Na Zhou;Zhihong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.916-937
    • /
    • 2023
  • Most of the existing Distributed Denial-of-Service mitigation schemes in Software-Defined Networking are only implemented in the network domain managed by a single controller. In fact, the zombies for attackers to launch large-scale DDoS attacks are actually not in the same network domain. Therefore, abnormal traffic of DDoS attack will affect multiple paths and network domains. A single defense method is difficult to deal with large-scale DDoS attacks. The cooperative defense of multiple domains becomes an important means to effectively solve cross-domain DDoS attacks. We propose an efficient multi-domain DDoS cooperative defense mechanism by integrating blockchain and SDN architecture. It includes attack traceability, inter-domain information sharing and attack mitigation. In order to reduce the length of the marking path and shorten the traceability time, we propose an AS-level packet traceability method called ASPM. We propose an information sharing method across multiple domains based on blockchain and smart contract. It effectively solves the impact of DDoS illegal traffic on multiple domains. According to the traceability results, we designed a DDoS attack mitigation method by replacing the ACL list with the IP address black/gray list. The experimental results show that our ASPM traceability method requires less data packets, high traceability precision and low overhead. And blockchain-based inter-domain sharing scheme has low cost, high scalability and high security. Attack mitigation measures can prevent illegal data flow in a timely and efficient manner.

Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities (가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석)

  • Jaeyoung Ryu;Seong-Min Han;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.888-896
    • /
    • 2023
  • When an aircraft is landing, it is expected that the aircraft will follow a specified approach procedure and then land at the airport. However, depending on the airport situation, neighbouring aircraft or the instructions of the air traffic controller, there can be a deviation from the specified approach. Detecting aircraft approach patterns is necessary for traffic flow and flight safety, and this paper suggests clustering techniques to identify aircraft patterns in the approach segment. The Gaussian Mixture Model (GMM), one of the machine learning techniques, is used to cluster the trajectories of aircraft, and ADS-B data from aircraft landing at the Gimhae airport in 2019 are used. The aircraft trajectories are clustered on the plane, and a total of 86 approach trajectory patterns are extracted using the centroid value of each cluster. Considering the correlation between the approach procedure pattern and overshoots, the distribution of overshoots is calculated.

Simulation of The Effective Distribution of Droplets and Numerical Analysis of The Control Drone-Only Nozzle (방제드론 전용노즐의 유효살포폭 내 액적분포 및 수치해석 시뮬레이션)

  • Jinteak Lim;Sunggoo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.531-536
    • /
    • 2024
  • Control drones, which are recently classified as smart agricultural machines in the agricultural field, are striving to build smart control and automatic control systems by combining hardware and software in order to shorten working hours and increase the effectiveness of control in the aging era of rural areas. In this paper, the characteristics of the nozzle dedicated to the control drone were analyzed as a basic study for the establishment of management control and automatic control systems. In order to consider various variables such as the type of various drone models, controller, wind, flight speed, flight altitude, weather conditions, and UAV pesticide types, related studies are needed to be able to present the drug spraying criteria in consideration of the characteristics and versatility of the nozzle. Therefore, to enable the consideration of various variables, flow analysis (CFD) simulation was conducted based on the self-designed nozzle, and the theoretical and experimental values of the droplet distribution were compared and analyzed through water reduction experiments. In the future, we intend to calculate accurate scattering in consideration of various variables according to drone operation and use it in management control and automatic control systems.

The Development of a Benthic Chamber (BelcI) for Benthic Boundary Layer Studies (저층 경계면 연구용 Benthic chamber(BelcI) 개발)

  • Lee, Jae-Seong;Bahk, Kyung-Soo;Khang, Buem-Joo;Kim, Young-Tae;Bae, Jae-Hyun;Kim, Seong-Soo;Park, Jung-Jun;Choi, Ok-In
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • We have developed an in-situ benthic chamber (BelcI) for use in coastal studies that can be deployed from a small boat. It is expected that BelcI will be useful in studying the benthic boundary layer because of its flexibility. BelcI is divided into three main areas: 1) frame and body chamber, 2) water sampler, and 3) stirring devices, electric controller, and data acquisition technology. To maximize in-situ use, the frame is constructed from two layers that consist of square cells. All electronic parts (motor controller, pA meter, data acquisition, etc.) are low-power consumers so that the external power supply can be safely removed from the system. The hydrodynamics of BelcI, measured by PIV (particle image velocimetry), show a typical "radial-flow impeller" pattern. Mixing time of water in the chamber is about 30 s, and shear velocity ($u^*$) near the bottom layer was calculated at $0.32\;cm\;s^{-1}$. Measurements of diffusivity boundary layer thickness showed a range of $180-230\;{\mu}m$. Sediment oxygen consumption rate, measured in-situ,was $84\;mmol\;O_2\;m^{-2}\;d_{-1}$, more than two times higher than on-board incubation results. Benthic fluxes assessed from in-situ incubation were estimated as follows: nitrate + nitrite = $0.18\;{\pm}\;0.07\;mmol\;m^{-2}\;d^{-1}$ ammonium $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$ phosphate = $0.09\;{\pm}\;0.02\;mmol\;m^{-2}\;d^{-1}$ and silicate = $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$.