• Title/Summary/Keyword: Flow control system

Search Result 3,071, Processing Time 0.031 seconds

Influence of Ammonia and Nitrite on the Survival and Growth of the Tiger Crab, Orithyia sinica (Linnaeus) Larvae (범게, Orithyia sinica 유생의 생존과 성장에 미치는 암모니아와 아질산의 영향)

  • Gu, Ja-Geun;Kim, Jong-Man;Jang, Cha-Hwan;Ji, Jeong-Hun;Gang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • This study investigates the influence of waterborne ammonia and nitrite on the zoea and megalopa stage larvae of tiger crab, Orithyia sinica under laboratory condition, focusing on the effects on survival and growth as deleterious responses of toxicant. Survival rate of zoea stage larvae exposed to control levels, and to 5, 10, 20 and 50 mg/L total ammonia-N, using a continuous flow system for 20 days was 80, 77, 45, 40 and 37%, respectively. Growth rate of zoea stage larvae exposed to 20 and 50 mg/L total ammonia was significantly lower than in controls after 20 days (P< 0.05). Survival rate and growth rate of megalopa stage larvae exposed to ammonia also decreased at greater than 10 and 50 mg/L, respectively. In the nitrite exposure experiment with zoea and megalopa stage larvae of tiger crab, survival rate was decreased in a concentration and exposure period-dependent way. The growth rate of zoea and megalopa stage larvae of tiger crab exposed to nitrite decreased at greater than 150 mg/L nitrite concentration.

A Study on the Application of Fire Modeling for Multiplex Cinema Theater (복합상영관 화재에 대한 화재모델링의 적용)

  • 허준호;김종훈;노삼규;김운형
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.42-48
    • /
    • 2004
  • The deterministic modeling techniques like Zone model and Field model are mainly used for thermal distribution and smoke flow at fire case in multi use facilities. While Zone model analyse fire simulation by dividing spaces by 2 section, the Field model dividing many cells. However, the difficultly follows to prove efficiency between the two models when it applys. Therefore new modeling development is required which in closes to real situation by verify number algorithm and related data for fire modeling. The paper analyses the efficiency of two different fire modeling at interior spaces of multiplex cinema theater. It is found that the zone model for average distribution and the field model for detail space phenomenon are relevant to apply. Also, Filed model is useful to the result that fire analysis and position of detector and review for smoke control system.

Implementation of IEEE 802.11n MAC using Design Methodology (통합된 구현 방식을 이용한 IEEE 802.11n MAC의 설계)

  • Chung, Chul-Ho;Lee, Sun-Kee;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.360-367
    • /
    • 2009
  • In this paper, we propose a design methodology of IEEE 802.11n MAC which aims to achieve the higher throughput of more than 100Mbps in downlink as measured at the MAC-SAP and present the implementation results of MAC using the proposed design methodology. With our proposed methodology, different from the conventional design flow which has the separate codes for the protocol validation, for the network simulation, and for the system implementation, the unified code can be used for the network simulation and the implementation of software and hardware. Our MAC architecture is partitioned into two parts, Upper-layer MAC and Lower-layer MAC, in order to achieve the high efficiency for the new features of IEEE 802.11n standard. They are implemented in software and hardware respectively. The implemented MAC is tested on ARM based FPGA board.

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

Thermophoretic Control of Particle Transport in a Microfluidic Channel (미세유체 채널 내에서 열영동에 의한 입자이동 제어)

  • So, Ju-Hee;Koo, Hyung-Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.730-734
    • /
    • 2019
  • Thermophoresis is a transport phenomenon of particles driven by a temperature gradient of a medium. In this paper, we discuss the thermophoresis of particles in microfluidic channels. In a non-fluidic, stagnant channel, the thermophoretic transport of micro-particles was found to be larger in proportion to the voltage applied to the platinum wire heat source installed in the channel. The variation of the temperature around the platinum wire depending on the voltage was estimated, by using the Callendar-van Dusen equation. The thermophoretic behavior of nano-particles in the same system was observed, which is similar to that of the microparticles. Finally, we fabricated a Y-shaped microfluidic channel with a platinum wire heat source installed in the channel, to realize the thermophoretic phenomenon of the particles in the suspension flowing through the channel. It is shown that the flow of the suspension can be controlled based on the thermophoretic principle.

Workflow Process-Aware Data Cubes and Analysis (워크플로우 프로세스 기반 데이터 큐브 및 분석)

  • Jin, Min-hyuck;Kim, Kwang-hoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.83-89
    • /
    • 2018
  • In workflow process intelligence and systems, workflow process mining and analysis issues are becoming increasingly important. In order to improve the quality of workflow process intelligence, it is essential for an efficient and effective data center storing workflow enactment event logs to be provisioned in carrying out the workflow process mining and analytics. In this paper, we propose a three-dimensional process-aware datacube for organizing workflow enterprise data centers to efficiently as well as effectively store the workflow process enactment event logs in the XES format. As a validation step, we carry out an experimental process mining to show how much perfectly the process-aware datacubes are suitable for discovering workflow process patterns and its analytical knowledge, like enacted proportions and enacted work transferences, from the workflow process enactment event histories. Finally, we confirmed that it is feasible to discover the fundamental control-flow patterns of workflow processes through the implemented workflow process mining system based on the process-aware data cube.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.

Hiding Shellcode in the 24Bit BMP Image (24Bit BMP 이미지를 이용한 쉘코드 은닉 기법)

  • Kum, Young-Jun;Choi, Hwa-Jae;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.691-705
    • /
    • 2012
  • Buffer overflow vulnerability is the most representative one that an attack method and its countermeasure is frequently developed and changed. This vulnerability is still one of the most critical threat since it was firstly introduced in middle of 1990s. Shellcode is a machine code which can be used in buffer overflow attack. Attackers make the shellcode for their own purposes and insert it into target host's memory space, then manipulate EIP(Extended Instruction Pointer) to intercept control flow of the target host system. Therefore, a lot of research to defend have been studied, and attackers also have done many research to bypass security measures designed for the shellcode defense. In this paper, we investigate shellcode defense and attack techniques briefly and we propose our new methodology which can hide shellcode in the 24bit BMP image. With this proposed technique, we can easily hide any shellcode executable and we can bypass the current detection and prevention techniques.

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.