• 제목/요약/키워드: Flow control strategy

검색결과 188건 처리시간 0.02초

500MW급 초임계압 관류형 보일러 온도제어에 대한 기술 (Temperature Control Technology for Once Through Boiler)

  • 이광훈;이주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.719-721
    • /
    • 1998
  • In this paper, we reviewed the steam temperature control in an once through boiler. The steam temperature control is very difficult. Generally, steam temperature of an once through boiler is not only controlled by boiler spray water flow, but also influenced by feed water flow and fuel flow. An advanced control strategy has been developed by experienced engineer. Specifically, We reviewed temperature control strategy for Taian power plant in this paper. This control strategy is represented by state control observer. This state control observer algorithm for temperature control has been used since the late 1980's. This paper describes control strategy employed and observed benefits from advanced steam temperature control.

  • PDF

과포화교통상태에서의 SPLIT COORDINATION신호제어전략 (Green-Split Coordination Strategy in Oversaturated Signal System)

  • 이광훈
    • 대한교통학회지
    • /
    • 제11권1호
    • /
    • pp.87-103
    • /
    • 1993
  • The subject this paper is the signal control strategy under oversaturated conditions. The nature of traffic control for oversaturation is essentially different from the standard control modes. While under non-saturated situation traffic control is needed for the sake of safety and efficiency, the throughput is essential under oversaturated conditions. Therefore berth objective and strategies differ. For an oversaturated stream the cycle time and the signal offset are thought to be of rather secondary importance. For this case the green split may well be the most important control variable to serve the excessive demand. Up to now, however, most efforts have concentrated on the strategy with the concept which lies just on the extension of Webster's. "Green-split Coordination Strategy for Over-Saturated Networks", presents newly contrived three types of strategies named Forward-coordination, Backward-coordination and Network-coordination respectively and describes the algorithms with the evaluations. The forward coordination strategy treats the forward wave of flow between two signals. The aim is to prevent the outbreak of queue due to the accumulation of temporary excess of demand in near-saturation or saturation flow. The backward coordination strategy treats the backward rave of flow between two signals. The goal is to prevent the waste of green time caused by the exit block at the upstream signal. for this purpose a feedback regulation is provided of the upstream green-split so that the inflow-outflow balance is kept zero. The resultant surplus of green time is alloted to other signal stages. Also here the examination is made of the appropriate value of the feedback control parameter. The network coordination strategy is operated to maximize the network throughput in a specific direction applying a bang-bang control at the bottleneck intersection. This is a type of intervenient control for policy reasons. For this strategy the green-split coordinations, particuarly the backward coordination, are essential as the tactical elements. In order to evaluate the preposed strategies those are compared with the latest existing strategy called saturation-degree-ratio control by the simulation experiments in an assumed 4$\times$4 grid network. The results are satisfactory showing a 10-15% reduction in delays and a 15% increase in network capacity.

  • PDF

제어 흐름 난독화를 효과적으로 수행하기 위한 전략 (A strategy for effectively applying a control flow obfuscation to programs)

  • 김정일;이은주
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.41-50
    • /
    • 2011
  • 악의적인 소프트웨어 역공학으로부터 프로그램이 가지는 코드를 보호하기 위해서 코드 난독화가 제안되었다. 이것은 기존에 존재하는 프로그램 코드를 어렵게 변환시키는 것으로 프로그램 코드에 대한 악의적인 정적 분석을 어렵게 만든다. 코드 난독화는 난독화 목적에 따라 레이아웃, 데이터, 제어 난독화로 분류되어진다. 이 중 제어 난독화는 프로그램이 가지는 제어 흐름에 대한 추상적인 정보를 보호하는 것으로 다양한 종류의 개별 제어 흐름 난독화 변환이 제안되었지만, 이를 효과적으로 적용할 수 있는 방법은 제안되지 않았다. 본 논문에서는 제어 흐름 난독화 변환을 프로그램에 효과적으로 적용할 수 있는 난독화 전략을 제안하고, 실험을 통해서 제안한 난독화 전략의 효용을 보였다.

전압원 컨버터 기반의 UPFC 모델에 대한 에너지 함수 제어전략의 적용 (Application of energy function control strategy to VSC based UPFC Model)

  • 국경수;오태규;전영환;김학만;김태현;전진홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.259-261
    • /
    • 2000
  • UPFC(Unified Power Flow Controller) consists of two voltage sourced converter(VSC)s inserted into AC system through series and parallel coupling transformer, where two VSCs are linked by capacitor at DC-side. Since VSC acts as an AC voltage source behind a reactance, where both magnitude and phase angle of the source are controllable, UPFC can be represented by the equation related to input-output relation of two VSCs. Voltage control of DC-link capacitor provides the path of real power flow between two VSCs. While UPFC is controlled for maintaining the given reference value in steady state, it should be controlled for damping power oscillation in dynamics. For such a control objective, the control strategy based on the energy function was proposed and has been shown to be effect and robust for damping power oscillation of power system. In this paper, UPFC model based on the VSC was analysed and applied to power-flow control and stability analysis. The control strategy based on the energy function is adopted for damping power oscillation of power system. The effectiveness of proposed control strategy was verified by simulation study

  • PDF

Strategy based PSO for Dynamic Control of UPFC to Enhance Power System Security

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.315-322
    • /
    • 2009
  • Penetration and installation of a new dynamic technology known as Flexible AC Transmission Systems (FACTS) in a practical and dynamic network requires and force expert engineer to develop robust and flexible strategy for planning and control. Unified Power Flow Controller (UPFC) is one of the recent and effective FACTS devices designed for multi control operation to enhance the power system security. This paper presents a dynamic strategy based on Particle Swarm Optimization (PSO) for optimal parameters setting of UPFC to enhance the system loadability. Firstly, we perform a multi power flow analysis with load incrementation to construct a global database to determine the initial efficient bounds associated to active power and reactive power target vector. Secondly a PSO technique applied to search the new parameters setting of the UPFC within the initial new active power and reactive power target bounds. The proposed approach is implemented with Matlab program and verified with IEEE 30-Bus test network. The results show that the proposed approach can converge to the near optimum solution with accuracy, and confirm that flexible multi-control of this device coordinated with efficient location enhance the system security of power system by eliminating the overloaded lines and the bus voltage violation.

Static Synchronous Series Compensator(SSSC) 댐핑 제어 및 해석모형 (Damping Control Strategy and Analysis Model of Static Synchronous Series Compensator(SSSC))

  • 김학만;전영환;오태규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권10호
    • /
    • pp.509-515
    • /
    • 2000
  • This paper addresses a damping control strategy of Static Synchronous Series Compensator(SSSC) and analysis model for stability study. The effect of injected voltage source generated by SSSC is modelled as equivalent load. This model is thought to be reasonable for the stability study because the dynamics of SSSC is very fast compared with that of power system. Damping controller of SSSC is based on Transient Energy Function method. The proposed control strategy is insensitive to the operating conditions like power flow level because control law depends on the phase angles. The proposed analysis model and control strategy was confirmed by WSCC 9 bus system and two area system. Especially, the robustness of proposed control strategy is demonstrated with respect to multiple operating conditions in two area system.

  • PDF

Analysis of steam generator tube rupture accidents for the development of mitigation strategies

  • Bang, Jungjin;Choi, Gi Hyeon;Jerng, Dong-Wook;Bae, Sung-Won;Jang, Sunghyon;Ha, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.152-161
    • /
    • 2022
  • We analyzed mitigation strategies for steam generator tube rupture (SGTR) accidents using MARS code under both full-power and low-power and shutdown (LPSD) conditions. In general, there are two approaches to mitigating SGTR accidents: supplementing the reactor coolant inventory using safety injection systems and depressurizing the reactor coolant system (RCS) by cooling it down using the intact steam generator. These mitigation strategies were compared from the viewpoint of break flow from the ruptured steam generator tube, the core integrity, and the possibility of the main steam safety valves opening, which is associated with the potential release of radiation. The "cooldown strategy" is recommended for break flow control, whereas the "RCS make-up strategy" is better for RCS inventory control. Under full power, neither mitigation strategy made a significant difference except for on the break flow while, in LPSD modes, the RCS cooldown strategy resulted in lower break and discharge flows, and thus less radiation release. As a result, using the cooldown strategy for an SGTR under LPSD conditions is recommended. These results can be used as a fundamental guide for mitigation strategies for SGTR accidents according to the operational mode.

유압식 이족 휴머노이드 로봇의 경사면 보행 연구 (Biped Walking of Hydraulic Humanoid Robot on Inclined Floors)

  • 김정엽
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

V2I 통신을 이용한 교통류 분산제어 전략 수립 및 평가 (Evaluating of Traffic Flow Distributed Control Strategy on u-TSN(ubiquitous-Transportation Sensor Network))

  • 김원규;이민희;강경원;김병종;강연수;오철;김송주
    • 정보통신설비학회논문지
    • /
    • 제8권3호
    • /
    • pp.122-131
    • /
    • 2009
  • Ubiquitous-Transportation sensor network is able to realize a vehicle ad-hoc network. Since there are some problems in an existing ITS system, the new technology and traffic information strategies are requirements in this advanced system, u-TSN. The purposes of this paper is to introduce the components on u-TSN system, establish new traffic strategies for this system, and then evaluate these strategies by making a comparative study of ITS and using micro traffic simulator, AIMSUN. The strategy evaluated by AIMSUN is position-based multicast strategy which provides traffic information to vehicles using V2I (vehicle to Infrastructure) communication. This paper focuses on the providing real-time route guidance information when congestion is occurred by the incidents. This study estimates total travel time on each route by API modules. Result from simulation experiments suggests that position-based multicast strategy can achieve more optimal network performance and increased driver satisfaction since the total accumulated travel times of both the major road and the total system on position-based multicast strategy are less than those on VMS.

  • PDF

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.